
1

`

Free the Bob - Design Document
Jonathan Lucuix-André

Mugisha Kakou

2

Contents

I Project Overview...8

I.1 Story……………………………………………………………...…………………...…..8

I.2 Project Description…………………………………………………..……………….…...9

I.2.1 System Objectives………………………………………………………….……..9

I.2.2 Project Constraints & Scope…………………………………………………..…10

I.2.3 Tools & Methodologies………………………………………………………….11

I.2.4 Critical project Events…………………………………………………………....12

II Design..14

II.1 Algorithms..14

II.1.1 Procedural Terrain Generation...14

II.1.2 Input Handling & Game Object Updating...17

II.1.3 Camera Culling..18

II.1.4 Heads-Up Display……………………………………………………………..…19

II.1.5 Zombie AI..19

II.1.6 Item Crafting..21

II.2 GUI...23

II.3 UML..35

II.3.1 Classes..35

II.3.1.1 GameObject..36

3

II.3.1.2 Human...45

II.3.1.3 Player and Zombie..52

II.3.1.4 Interactive Object ...69

II.3.1.5 Tree and Box...73

II.3.1.6 Projectile...78

II.3.1.7 Earthquake..81

II.3.1.8 ItemObject...83

II.3.1.9 Collider...89

II.3.1.10 Rectangle...92

II.3.1.11 TerrainLayer...97

II.3.1.12 Level..111

II.3.1.13 TerrainLevel...113

II.3.1.14 CombatLevel..124

II.3.1.15 World...132

II.3.1.16 WorldRenderer...147

II.3.1.17 GameObjectRenderer...151

II.3.1.18 LevelRenderer..154

II.3.1.19 TerrainRenderer...157

II.3.1.20 InteractiveObjectRenderer & ItemObjectRenderer.....................160

II.3.1.21 AnimationRenderer..164

II.3.1.22 EffectRenderer...166

4

II.3.1.23 ProjectileRenderer……………………………………………....168

II.3.1.24 PlayerRenderer & ZombieRenderer..170

II.3.1.25 Screen...179

II.3.1.26 CompanySplashScreen, LoadingScreen, MainMenuScreen &

 WorldSelectScreen………………………………………..….…185

II.3.1.27 MainMenuLoadingScreen………………………………..……..205

II.3.1.28 GameSelectScreen...209

II.3.1.29 GameScreen……………………………………………….……216

II.3.1.30 Hud...226

II.3.1.31 ExplorationHud & CombatHud...229

II.3.1.32 BackpackHud & CraftingHud..238

II.3.1.33 SurvivalGuideHud & PauseMenuHud..249

II.3.1.34 CraftingTable...259

II.3.1.35 InventoryList...266

II.3.1.36 Assets..273

II.3.1.37 CraftingManager..278

II.3.1.38 GestureManager..289

II.3.1.39 ConfirmDialog..297

II.3.1.40 SpriteUtils...300

II.3.1.41 Profile..302

II.3.1.42 SoundManager and MusicManager..313

5

II.3.1.43 PreferencesManager...317

II.3.1.44 ProfileManager..320

II.3.1.45 Settings...325

II.3.1.46 GameObjectManager...330

II.3.1.47 Cell...332

II.3.1.48 Line..335

II.3.1.49 Item..338

II.3.1.50 Weapon..341

II.3.1.51 RangedWeapon..343

II.3.1.52 MeleeWeapon..346

II.3.1.53 Axe & Rifle..349

II.3.1.54 Craftable...352

II.3.1.55 Craftable Subclasses..353

II.3.1.56 Inventory..355

II.3.1.57 Loadout..357

II.3.1.58 Pool classes..359

II.3.1.59 TiledImage..361

II.3.1.60 KoAnimation and VersusAnimation..364

II.3.1.61 CrosshairRenderer..367

II.3.2 Class Hierarchies...370

II.3.2.1 Human Hierarchy..371

6

II.3.2.2 Human Enumerations ..372

II.3.2.3 InteractiveObject Hierarchy & Enumerations…………………………373

II.3.2.4 ItemObject Hierarchy & Ennumerations………………………………374

II.3.2.5 Collider Hierarchy..374

II.3.2.6 World Hierarchy, Inner Classes & Enumerations……………………..375

II.3.2.7 Screen Hierarchy...376

II.3.2.8 GameScreen Enumerations & Inner Classes..377

II.3.2.9 Hud Hierarchy (a) ..382

II.3.2.10 Hud Hierarchy (b) ..383

II.3.2.11 CraftingTable inner class...383

II.3.2.12 Pool Hierarchy ..385

II.3.2.13 TerrainLayer Enumerations…………………………………….385

II.3.2.14 Level Hierarchy………………………………………………...386

II.3.2.15 Weapon Hierarchy……………………………………………...386

II.3.2.16 Craftable Hierarchy (a)…………………………………………387

II.3.2.17 Craftable Hierarchy (b)…………………………………………387

II.3.2.18 CraftingManager Inner Classes…………………………………388

II.3.2.19 ItemManager Inner Classes……………………………………..392

II.3.2.20 GestureManager Hierarchy …………………………………….395

II.3.2.21 InputManager Hierarchy……………………… ……………….396

III Methods of Evaluation...397

7

IV Results: System Quality…………………………………………………………………….399

IV.1 Developer Perception…………………………………………………………...399

IV.2 Objective Measure…………………………………………………...…………401

IV.3 Developer Evaluation Sheets…………………………………………..……….402

V Project Management………………………………………………………………..………405

V.1 Timeline………………………………………………………………………..………405

VI Conclusion…………………………………………………………………………...……..407

8

I. Project Overview

I.1 Story

In the world of Free the Bob, video games have harnessed the power of virtual reality.

Gamers worldwide compete professionally in video games, rising the ranks of professional

leaderboards.

Amidst this virtual reality craze, you play Bob, an avid gamer whose only aspiration is to

climb the competitive ladders and compete in the professional leagues. Indeed, only then would

life truly become an enthralling adventure.

On March 24, 2024, a survival game named Survivor is released. It becomes a success

overnight, selling two million copies on its first day in retail. Among its innovative gameplay

mechanics, Survivor claims to revolutionize the way virtual reality is utilized in the video game

space.

Bob, one of the lucky owners of the game, grabs a copy on release day and makes his

way home. Anxious to play the game, he puts on his virtual reality headset, inserts the disc into

his gaming machine, and closes his eyes. Almost instantaneously, Bob gets sucked into an

alternate reality, waking up in a post-apocalyptic forest.

As he spawns in this new world, Bob is greeted by a flying companion named Levi,

tasked to guide Bob through the game’s mechanics. Levi teaches him the basic survival skills he

needs to survive in the forest.

Before leaving Bob, Levi informs him of one life-threatening caveat: he can't leave the

game until he beats it. Startled by this truth, Bob demands to know how to get out of the game.

Levi explains that the only way to escape is to build a teleportation device. However, even he

doesn't know how to craft it.

With these teachings, Bob sets out to venture into the frozen recesses of an unknown

world. Perfused with snow, and filled with the flesh-eating undead, the video game world is

endless, spanning thousands of kilometers in all directions. Thus, using the knowledge Bob

9

recollects from chemistry class, he must collect resources, craft consumables, and build the

weapons he'll need to fend off the zombies of the forest.

Figure 1 : Visual representation of the teleporter

I.2 Project Description

I.2.1 System Objectives

The objective of the game is to test the player’s knowledge of chemistry. Only with an

adequate understanding of chemistry can the player survive the forest. Therefore, the player must

be able to reason out certain chemical formulas, allowing him or her to craft basic survival

necessities, along with the weapons he or she will need to fight the flesh-eating undead.

Furthermore, given that the project is a video game, the objective of the system is also to

entertain the player. As a matter of fact, a great deal of work has been put to make the game as

fun as possible. To do this, the project was streamlined, and effort was put into the game to

simplify the controls, and make them accessible and intuitive for everyday phone users.

10

I.2.2 Project Constraints & Scope

 There are numerous constraints that were present when we started developing the game.

For one, the game was built to be single-player. Furthermore, it wan't meant to use the Internet,

as it was built to be played offline.

 Another constraint present at the beginning of development was that we chose to target

Android versions 2.3.4 and above. This limitation was imposed to ensure that every device

would be capable of playing the game at a decent frame rate. However, for this reason, the scope

of the project is rather large, as a large portion of Android phone owners run an Android version

above version 2.3.4.

 Furthermore, another constraint we imposed on the project was our use of the OpenGL

ES 1.0 graphics library instead of the version 2.0 and above. We chose to develop for an older

version of the library in order to maintain compatibility with older devices, therefore augmenting

the scope of our project. If we chose a more recent version of the library, we would alienate a

great deal of potential Android users. In fact, not all phones support OpenGL ES 2.0 and above.

In addition, we set this constraint because we did not need any functionalities introduced in later

versions of OpenGL ES.

 However, from a user's point of view, the biggest constraint of the game is that the player

must have knowledge about the formation of certain resources using chemical formulas. This is a

constraint we decided to at the beginning of the project. In fact, if the player did not know the

ingredients to make gunpowder, we wanted him to have a hard time finding the right ingredients

to craft such an item. We tried to limit this constraint by introducing the Survival Guide, which

gives pointers on how to combine certain items to create new ones. However, players may not

feel inclined to immediately traverse the Survival Guide in search of item recipes. This allows

the game to feel like a more genuine survival game, where the user needs to figure out certain

mechanics of the game on his or her own.

 Additionally, another constraint we imposed at the beginning of development was the

fact that the game used the concept of layers, a new concept that has never been implemented in

2d games. In fact, in a traditional 2.5D game, the player usually has the ability to move up,

11

down, left or right. However, in this game, the player can only move left or right, but can move

up or down between what are called "layers". This will present a barrier of entry for players.

However, we wanted to create a project with innovative mechanics that could define new types

of 2d movement.

 On a separate note, near the end of development, there were several constraints we had to

impose on the project. These constraints were made in order to meet the project's deadline. For

instance, there are a very restricted amount of items that can be crafted using chemistry. As

previously explained, we needed this limitation in order to meet the deadline for the project.

Drawing the art for each item, along with programming unique functionalities for each new item

is a time-consuming process. Therefore, near the end of development, we chose to keep our list

of available items relatively small, instead of expanding on it. This reduced the scope of our

project, as it ultimately made it less feature-rich.

 Near the end of development, we also had to impose another constraint on our project. In

fact, we chose not to implement the optional features. This constraint was created due to the fact

that we did not have enough time to implement these additional features. Furthermore, given that

we wanted to play-test the game fully before handing it in, we chose to spend our final week

bug-fixing. Once again this reduced the scope of our project. In fact, as with the constraint stated

in the paragraph above, this ultimately made our system less content-rich.

I.2.3 Tools & Methodologies

 The game uses the Android Developer Tools in order to work on Android devices. All

user interfaces and controls are designed with a touch screen in mind, allowing for a larger

potential user base, and a lower barrier of entry.

 Furthermore, the application is built off the LibGDX framework, which allows the game

to utilize the graphical capabilities of the OpenGL ES library. The framework also uses scene2d,

a 2d scene graph which allows the creation of graphical user interfaces. This scene graph gives

us access to pre-defined GUI widgets. Its functionality closely resembles that of Java's Swing

library.

12

 In addition, given that the LibGDX framework is used, the application can run on the PC

platform for debugging purposes. As such, an Android phone is not required to test minor

changes in code, effectively making the debugging process faster, and thus more efficient.

 Finally, in terms of tools, we also used the Spine animation engine. This is an external

program which allows us to import images and hand-animate them. A run-time library inside

LibGDX is used to import these animations and run them in the game.

 On a separate note, the methodologies we adopt for the creation of our game are closely

tied to our decision to build the application for Android devices. In fact, the need to optimize our

algorithms to the best of our abilities is crucial. In truth, only with a great deal of optimization

can our application run smoothly on low-end Android devices. This is important, as these low-

end devices still exist on the market. Additionally, as detailed in later sections, most of our

algorithms run efficiently, therefore allowing the procedural generation of our world and the

game logic itself to run quickly.

 Furthermore, one of our biggest methodologies was the need to intelligently control

garbage collection. In fact, on Android devices, Java is known to activate its garbage collector

often. In addition, it also does it very inefficiently. Therefore, object instantiation and destruction

needs to be minimized in order to prevent garbage collection from activating when the player is

traversing the world and playing the game. For this reason, our biggest optimization is our use of

pools, which allows the program to create a great number of objects when it launches, and to

hold its object references for the game's entire lifecycle. Using the same concept of pools, object

instantiations are reused whenever an already-created object is no longer needed. Essentially, we

recycle objects for as long as possible to avoid running out of memory.

I.2.4 Critical Project Events

 The most critical project event which occurred during development was our need to add

certain features to our application. For instance, when showed the game to our instructor, we

were given suggestions to add music and sound into the game. This occurred on week 13, two

weeks before the final source code was due. However, given that most of our features were

already implemented, we decided to acknowledge the suggestion and implement audio into the

13

game. However, the task was larger than expected, as it necessitated the implementation of three

new classes: the SoundManager, the MusicManager, and the SoundListener. The first of the

three manages the sound effects, and the volume at which they plays. Similarly, the

MusicListener does the same thing for music playback. Note that the sound and music were

separated from a programmatical perspective. We chose this approach because, if we ever

wanted to add an Options Menu, the user would want to change the volume of sound and music

independently. Thus, we chose to manage sound effects and music separately. Finally, the last of

the three classes listed above delegates events to the GameScreen whenever the application

needs to play a sound.

 However, implementing the audio feature imposed a constraint to our project not

explained in Section I.2.2 Project Constraints & Scope: we had to find sound effects, but we

couldn't create them. In fact, we lacked experience in creating sound and music. Therefore, we

turned towards FreeSound.org, which allowed us to choose from a vast library of free and

royalty free sounds. We imported these sounds into our game, effectively adding audio to the

project.

 On a different note, the second critical project event we encountered was our need to

implement the GameSelectScreen. Again, due to the teacher's feedback, we decided to include a

new screen into our game which would allow the user to either load, save or continue his most

recent profile. This required a few additions in code, but allowed us to improve the user's

experience significantly. In fact, in the testing phase of the project, when the users navigated the

GameSelectScreen, users were able to traverse the game's menus very easily. Furthermore, due to

this added screen, users had no difficulty in grasping the concept of profiles and worlds.

 Furthermore, we added this additional feature two weeks before the project was due for

submission, on week 13. Nonetheless, this additional feature did not require a large amount of

extra code. In fact, whereas adding sound and music required three new classes, the

GameSelectScreen only required one class: the GameSelectScreen. This new class simply allows

the user to select to either load, continue or create a new profile.

 Once the GameSelectScreen was implemented on week 14, we decided to take away the

14

constraint which forced users to have a maximum of three profiles. In fact, we wanted to allow

the player to have access to an unlimited amount of profiles, as long as the device does not run

out of physical hard drive space. This change did not require many alterations of code. In fact,

the profile selection list already present in the WorldSelectMenu was simply placed into a scroll

pane, so that the user could scroll down his list of profiles. Furthermore, we also replaced the

maxProfiles:int member variable inside the ProfileManager with the numProfiles:int variable.

This new variable keepstrack of the amount of profiles held by the user. Therefore, given that the

necessary modifications were small, we managed to implement them on week 14.

II. Design

II.1 Algorithms

Important Notes:

1. Only the most important and complex algorithms of the project are detailed in this

section. Explanations of other algorithms present in the project are given in section II.3.1

Classes.

2. The section which requires the analysis and understanding of the system's problems is

merged with the section on algorithms. This allows the problems to be defined at the

same time that the algorithms our presented. In this manner, we navigate and describe the

problem at the same time we introduce the solution.

II.1.1 Procedural Terrain Generation & Code Structure

Programmatically, the forest in Free the Bob needed to be procedurally generated.

Furthermore, it had to be infinite. To create an efficient solution to this problem, the world was

built using a “terrain level”. This level consists of a fixed-size matrix, where every element

consists of a “terrain layer”. Each layer is represented as either a constant, linear, or cosine

function which the player can walk on. From a programmatic perspective, the player is always at

the center of the terrain level. When the player moves from one layer to another, the level adjusts

its matrix and moves the layers so that the player always resides in the center-most layer. Once

the layers are re-positioned inside the matrix, their row and columns relative to the world also

15

change. Using the layer’s cell coordinates, along with a random number generator, the layer’s

terrain is built. In fact, the geometry of each layer is rebuilt according to the world seed and the

layer's cell coordinate relative to the world. In fact, to calculate the seed needed to generate the

layer’s geometry, the layer’s column is multiplied by the world seed. This seed is then placed

into a Random object, which is then used to determine the geometrical properties of the layer. As

mentioned above, these geometric properties simply denote a constant, linear, or cosine function.

The generation of such an elementary function is defined as follows. First, a random number

generator provides number between 0 and 1.0, exclusive. If the number is greater than 0.7, the

layer will be a cosine function. If the number is above 0.4, the layer will be a linear function. If

the number is below these two values, the layer becomes a constant function.

If the layer is a cosine function, the random number generator then produces a new

number between 0 and 1.0. This random number is chosen as the amplitude of the function.

Similarly, if the layer is represented as a linear function, another random number is generated.

This random value is chosen to be the slope of the function. However, if the layer is a constant

function, no extra computations or random numbers are required. This operation of defining the

elementary function for a TerrainLayer takes O(1) time.

Figure 2: Visual representation of the TerrainLayer matrix

Conversely, we needed to find a method in which to populate the world with objects.

Furthermore, this process had to be done efficiently. Given that the world is infinite, we needed

to find an intelligent algorithm which placed objects on each TerrainLayer efficiently. To

achieve this goal, we again use the concept of seeds and random number generators. In reality, to

terrainLayers[0][0]

16

place objects on each layer, a random number generator seed is computed. To calculate said

seed, the terrain layer’s row and column are added. The world seed is then added to this result.

The resulting number is called the object seed. Since every layer has unique cell coordinate in

the world, each layer has a unique seed. This unique seed is used to randomly generate numbers

which will, in turn, be used to create a series of objects for the layer. Thus, each layer has a

different set of objects. The object-placement algorithm then iterates from the left-most x-

position of the layer to the right-most x-position of the layer. Using the pre-computed seed, a

math.util.Random object generates a random number. If, for instance, the randomly-generated

number is below 0.5, a tree is placed in the x-position the loop is iterating through. If the number

is above 0.6, for example, a box is placed there. This object-placement algorithm thus takes O(n)

time, as it uses a for loop in order to cycle through the left-most position to the right-most

position of a layer.

A TerrainLayer thus holds an array of GameObjects. This array holds the GameObjects

that are rendered in the given layer. Each layer also has a row and a column in the world. The

column determines the layer’s geometry, while its row determines the objects placed on the

layer.

On a separate note, we wanted to create an understandable relationship and hierarchy

between each class in the program. In case we wanted to introduce new functionalities or

features, we wanted the code to be easy to understand and to build on. Therefore, part of our

solution to this problem is the World class, which holds a reference to the terrain level, along

with the GameObjects contained in the game. In addition, it also controls all game logic. Thus,

the class can be seen as a container or a master class for most of the game’s entities and

gameplay mechanics. This class allowed the program to sustain an understandable code

structure.

17

Figure 3: The player exploring the procedurally-generated world

II.1.2 Input Handling & GameObject Updating

 We wanted to create an efficient process to handle input. In fact, we did not want any

noticeable frame rate inconsistencies to appear when the user tapped on an object. Therefore, we

wanted to use an efficient method which would filter taps and detect which objects said taps

touched. For this reason, we used the following algorithm in order to process input. First, when

the user taps the screen, the finger tap is delegated to the InputManager class. Then, the

InputManager, which holds an instance of the camera used to render the world, can convert the

given tap coordinates into world coordinates. The position of the tap is then delegated to the

World, which can subsequently decide how to process the touch.

To detect if a GameObject in the world is touched, the World instance first takes the

TerrainLevel instance, and grabs all of the TerrainLayers in the same row as the player. Each of

the TerrainLayers’ GameObject arrays’ are taken and added to a more global GameObject array.

This array is stored inside the TerrainLevel class. The World then receives this array, cycles

18

through it in O(n) time, and checks each game object collider to see if the given tap coordinates

touch the game object. Thus, this algorithm presents an efficient solution to the problem of input

handling.

To update the game objects and their logic, a similar procedure was used. In truth, every

game tick, the aformentioned GameObject array is passed to the World so that every entity in the

world can be updated. Thus, the algorithm used to update GameObjects works as follows. First,

the World class iterates through each GameObject in the aforementioned array in O(n) time.

Then, each GameObject’s update() method is called.

Note on Bounding Boxes:

Each GameObject in the world holds a Collider instance. This collider is used to dictate

the physical dimensions of an object, and to determine whether two objects ever collide. All of

the GameObjects in the game use bounding boxes denoted by the Rectangle class. This class

contains the methods intersects(Rectangle) and intersects(Vector2). These methods simply check

whether or not a rectangle or a point intersects with another rectangle or another point in space.

These intersection algorithm consists of simple mathematical calculation which take O(1) time.

II.1.3 Camera Culling

As with the previous algorithms, we wanted rendering to be optimized in our game. In

fact, we knew that image drawing would be one of the most resource-heavy operations in the

program. Therefore, as a solution to our problem, a technique called camera culling was

implemented to optimize object rendering. To explain the algorithm, say that a tree wants to be

drawn on-screen. First, the tree's collider is checked to be inside or outside the world's camera. If

the object happens to be outside the camera, it is not rendered by OpenGL. Conversely, if it is

viewable by the camera, it is drawn to the screen.

Internally, this algorithm is implemented inside the GameObjectRenderer class. Inside

the render() method, each GameObject instance in the world is first tested to be inside the

camera. This is done using the Collider.insideCamera(OrthographicCamera):boolean method. If

it returns true, the GameObject is inside the camera’s visible region, and is thus drawn to the

screen. Programmatically, the Collider.insideCamera(...):boolean method takes in an

19

OrthographicCamera instance as an argument. The method which checks if the GameObject’s

rectangle collider intersects with the camera. This is tested using the camera and the collider's

position and size and simple mathematical calculations.

II.1.4 Heads-Up Displays

Furthremore, we wanted to introduce a well-structured way of creating GUIs. In fact, we

knew that we would have many GUIs in our game, and thus their creation needed to be easy. To

render a heads-up display for the game, subclasses are derived from the Hud class. This class

holds a Stage, a LibGDX object used to draw 2d widgets to the screen. Each Hud subclass holds

buttons and widgets that will be drawn to the screen using this stage. Therefore, using thsi code

structure, we found a solution to our need to make the creation of in-game GUIs simple.

II.1.5 Zombie AI

Given that our game contained zombies, we needed to control them using an efficient

algorithm. In point of fact, if the algorithm was innefficient, the game would be unable to update

a large number of zombies at the same time. Thus, we avoided this limitation using efficient

artificial intelligence. When a zombie is walking around in the world, it simply walks back and

forth between the beginning and the end of the layer to which it belongs.

//Pseudo code

if(zombie.x > layer.rightPoint.x)

 zombie.direction = Direction.LEFT;

else if(zombie.x < layer.leftPoint.x)

 zombie.direction = Direction.RIGHT;

 Conversely, when the zombie is fighting against the player, can make several decisions.

First, he can charge to towards the player. Once he reaches the player, he will deal damage him.

Alternatively, the zombie can shoot an earthquake at the player. Lastly, the zombie can retreat

back to his original position.

20

 The zombies' decision-making algorithm is detailed in the pseudo-code below.

 //Pseudo code

 if(timeSinceLastAttack < 1 second)

 return;

 int choice = Math.random();

 if(choice > 0.5) //50% chance of charging at the player

 {

 zombie.state = State.CHARGE;

 zombie.direction = Direction.LEFT; //The player is always to the left of the
 //zombie

 }

 else

 {

 zombie.state = State.SMASH;

 }

 // If the zombie has collided with the player, deal damage to him and retreat back to
 // original position

 if(zombie.collider.intersects(player.collider))

 {

 zombie.dealDamage (player);

 zombie.state = State.WALK; //Walk back to original position

 zombie.direction = Direction.RIGHT;

 }

21

 // If the zombie is past the left bounds of the level, make him teleport to the other side of
 // the level to walk back to his original position.

 if (zombie.x < level.x)

 {

 zombie.x = level.rightPoint.x;

 zombie.state = State.WALK;

 zombie.direction = Direction.LEFT;

 }

II.2.6 Item Crafting

 The way the item crafting system works is with Item instances. Each Item instance

represents a resource that the player can use to craft another item. Inside the crafting menu, say

that the player mixes items a and b. These items will be placed inside a list, which is sent to the

CraftingManager to test if the list of items corresponds to a possible combination.

 // Pseudo code

 // (CraftingManager method which checks if a and b form a crafting combination)

 if(a instanceof Wood.class && a.quantity == 10 && b instanceof Iron.class &&
 b.quantity == 5)

 {

 //Return Axe.class, so that the user can craft an axe

 }

 else if(a instanceof Iron.class && a.quantity == 10

 && a instanceof Wood.class && a.quantity == 15)

 {

 //Return Rifle.class, so that the user can craft an axe

 }

 ...

 ...

22

 The algorithm uses a brute force approach. In fact, the items that the player is trying to

mix are checked with each possible combination until an appropriate one is found. This approach

is efficient, as there are not many possible item combinations in the world. This algorithm has

O(1) time complexity, and is thus very efficient.

23

II.2 GUI

Splash Screen:

 The splash screen is displayed once when the game is started. It is shown for

approximately one and a half seconds to inform him about the creators of the project. It lasts only

for a second and a half to avoid boring the player.

Figure 4: Visual representation of the splash screen, presenting the creators of the game

Loading Screen:

 The loading screen appears after the splash screen when the game starts. It displays a

progress bar, informing the player on how much time is left before the game is loaded. This

prevents the user from believing that the game is frozen.

(See figure on following page)

24

Figure 5: Visual representation of the loading screen

Main Menu:

 This is the menu displayed once the game finishes loading. It prompts the user to start

playing the game.

Figure 6 : Visual representation of the main menu once the game has finished loading

Transitions to the Game Select Menu

Progress Percentage

25

Game Select:

 The game selection screen allows the player to either continue from his last-saved profile,

create a new world, or load an old profile.

Figure 7: Visual representation of the Game Select Menu

World Select:

 The world selection screen displays a list of profiles that the user has saved. The player

can choose to load an already-created profile.

(See next page for figure)

Transitions to the World Select Menu

Creates a new world

Continues the game from the player's
last-saved profile

Transitions to the Main Menu

26

Figure 8: Visual representation of the World Select Menu

Exploration HUD:

 This heads-up display (HUD) is shown when the player is exploring the world and

scavenging items.

(See next page for visual representation of the Exploration HUD)

Transitions to the Main Menu Starts the game with the selected profile

Deletes the profile. A popup
first prompts the user to
confirm his choice.

The profile number,
followed by a time stamp in
the form MM/DD/YYY –
HH:MM:SS is shown,
indicating the time when
the profile was last saved.

27

Figure 9 : Visual representation of the Exploration HUD

 Great care was put into making the buttons as noticeable as possible. Furthermore, the

size of the buttons were chosen to be rather large. This avoids the user from becoming frustrated

at his inability to press a button which is too small.

(See next page for Combat HUD)

Transitions to the Backpack Menu

Moves the player to the left
(Hold)

Transitions to the Pause Menu

Moves the player to the right
(Hold)

28

Combat HUD:

 This HUD is shown when the player is in combat mode with a zombie. The player has

three different options. He can jump, perform a melee attack, or fire his ranged weapon.

 Figure 10 : Visual representation of the Combat HUD

 Once again, the main action buttons were made to be as large as possible, without

obstructing the player's view of the combat. This allowed the user to be able to easily see his

options wihout needing to look too closely.

 In addition, the buttons were all mapped to different colours to ensure that the player

could recognize each different button quickly.

Transitions to the Pause Menu

Fires ranged weapon (hold)

Performs a melee attack

Makes the player jump

29

Pause Menu:

 The pause menu is displayed when the user presses the pause button on the top right

corner of the screen. When shown, the game is paused, and the player is prompted to either

resume the game or transition to the main menu.

Figure 11 : Visual representation of the pause menu

 As before, the buttons were mapped to different colours so that the user could recognize

each option easily. It is also appealing to the eye, as it adds a needed sense of colour to the

game.

(See next page for Backpack Menu)

Transitions back to the Main Menu

Resumes the game

Saves the game's progress

30

Backpack Menu:

This menu is displayed when the user presses the backpack button. When this menu is shown,

the game is paused. Here, the player has a chance to transition to the crafting menu or to

transition to the survival guide.

Figure 12 : Visual representation of the backpack menu

Crafting Menu:

 The crafting menu is accessed from the backpack. It allows the user to craft new items

using the objects he has collected in the world. The list on the left shows all of the items that

belong to the player. It is called the inventory list. The right-hand boxes called the crafting list,

which contains the items that are combined to create a new item. Note that, in order to transfer an

item from the item list to the crafting list, the user simply has to click on an item in the item list.

In order to transfer an item from the crafting list back to the item list, the user has to click on an

item in the crafting list.

Resumes the game

Switches to the
Crafting Menu

Switches to the
Survival Guide Menu

31

 Figure 13 : Visual representation of the crafting menu

Survival Guide:

 When the survival guide button is pressed in the backpack menu, this survival guide

menu is displayed. The user has a choice of several entries in the guide. When an entry is

pressed, a description of the entry is shown.

(See next page for visual representation of the menu)

The name of each item
is displayed, followed
by the amount available
in the inventory.

When an item is
pressed, one instance of
that item is transferred
to the crafting list.

A total of six items can
be added to the crafting
list

The item crafted by
combining the above
resources

When pressed, a confirmation
dialog appears. If confirmed, the
above item is created and added
to the item list on the left.

The number on top of the item
indicates the quantity of items
placed in the list.

Transitions to the
backpack menu.

32

Figure 14 : Visual representation of the survival guide

When pressing on the How to Defend Yourself entry, for instance, the following

description shown in the figure on the following page shows up.

These descriptions aim to help the user understand the features of the game. Without this

survival guide, the player would have a lot of trouble navigating his way through the game.

Thus, we introduced this guide in order to help the user along his journey through the game.

It also aimed to ease frustration, as a player unaware of the game's mechanics could

become easily frustrated at his inability to perform basic procedures.

Returns to the Backpack Menu

An entry in the survival guide.
When pressed, a description
pertinent to the chosen entry is
displayed.

33

Figure 15 : The survival guide, when one of the entries are pressed and a description appears

 The survival guide informs the player about the game's tutorials, along with recipes

needed to craft survival resources. For example, in the How to Escape entry, the following

description is given:

"Build a teleporter - 40 Sulfur + 30 Iron + 40 Saltpeter + 50 Wood"

Main Menu Loading Screen:

 This loading screen is displayed whenever the user presses Quit in the pause menu and

confirms the dialog which opens. It displays a hint, which aims to broaden the user's knowledge

of the game.

(See next page for figure)

A description for the entry
selected in the Survival Guide.

Returns back to the list
of selectable entries

34

Figure 16 : Visual representation of the main menu loading screen

Hint

35

II.3 UML

II.3.1 Classes

Important Notes:

1. Floating-point variables are used as opposed to double variables as they take up only four bytes as

opposed to eight.

2. Enumerations and inner classes are not presented in this section for the sake of brevity. Their

contents normally are usually self-explanatory. Regardless, the full UML diagram of each

enumeration and inner class is given in Section II.3.2 - Class Hierarchies.

3. Any render, draw, or update method with a floating-point parameter accepts deltaTime as an

argument. deltaTime is a parameter which holds the time elapsed between the current frame and

the previous frame.

4. This section acts as an extension to Section II.1 Algorithms. In describing the data and behaviour

of each class, more insight is given about the algorithms used in the program.

5. The Vector2 class is a pre-defined LibGDX class used to denote an (x,y) position. It is used to

define a position in the world.

6. The Spine animation engine was used to create animations in the game. Thus, there are references

to the Skeleton class and attachments in the class diagrams. A Skeleton inside Spine refers to a

visual entity. This entity has a position and animations, along with attachments. Attachments are

simply images attached to a skeleton. They can be activated and deactivated using the

attachment’s name.

7. The Sprite class acts similarly to the Image class in Java. It references an image file and can be

drawn to the screen using LibGDX’s pre-defined classes.

8. All classes containing GUI widgets use anonymous inner classes as listeners. Thus, no mention is

found in the class diagrams about the widgets' listeners.

9. In certain cases, the setter or a getter for a data field is excluded. This may occur in the case that

the member variable should not be mutated by an outside class, or in the case that the variable

should not be accessed from an outside class.

36

10. The OrthographicCamera class is defined in the LibGDX framework. It represents a camera that

can render images to the screen. It has a width, a height, and a position. This class allows us to

implement a movable camera that can follow the player's position.

11. The following symbols precede methods and data fields in the UML class diagrams. Their

meanings are defined in the figure below.

Figure 17: Legend for UML class diagrams

II.3.1.1 GameObject (See next page for class diagram)

37

Figure 18 : GameObject class diagram

38

The GameObject class represents an entity in the world. It has a position, a velocity, and

an acceleration. The updatePosition() method performs the integration of velocity and

acceleration. In fact, this method takes the velocity and the acceleration of the GameObject, and

moves the object’s position according to these values. This integration step is done using Euler

integration. This integration method uses the following procedure to calculate the velocity and

the position of a GameObject every time the game updates.

//Pseudo code

velocity += aceleration * deltaTime;

position += velocity * deltaTime;

The collider of each GameObject is an instance of Rectangle. This rectangle is used to

detect collisions between two entities in the world. On the other hand, the terrainCell:Cell

member variable holds the cell coordinate of the GameObject in the TerrainLevel. For instance,

if the player is in row zero, column zero, then the player is on the layer with row zero and

column zero. This member variable allows each GameObject to know which entities in the world

it may interact with. For instance, the player can only touch GameObjects on the same row as the

player. Thus, the member variable tells the player if he is on the same row as other objects.

 On the other hand, the stateTime float is used for animations. It increments by deltaTime

every frame. It allows the GameObject to know how much time it has been in its current state.

This allows the Renderer objects to know which frame of animation to play for a given entity

based on how long the animation has played. Further, every time the GameObject changes states,

this number is re-set to zero.

 Furthermore, the objectId variables are integers used to number GameObjects in a

TerrainLayer. The first GameObject placed in a layer is numbered zero, the second is numbered

one, and the rest are numbered sequentially. Inside the player’s profile, a HashMap stores the

objectId’s for each GameObject that has been destroyed or scavenged in a layer. This is used to

prevent GameObjects that have been scavenged on a layer from being placed there again. Like

this, GameObjects that have been previously scavenged will not re-appear in the world. For

instance, a chopped tree will not re-appear once destroyed.

39

The GameObject's constructor accepts four floats: the width and height of the object’s

collider, and the x and y positions of the object.

 Next, the abstract update() method is overridden by subclasses to control the object's

game logic. Conversely, the updateCollider() method is called every game tick in order to update

the GameObject’s collider so that it follows his position.

 The abstract canTarget():boolean method returns true if the GameObject can be targeted

and attacked by a Human instance. A GameObject can be targetted if the player can advance

towards the object by clicking on it. The moveTo(x:float, y:float, time:float): void method moves

the GameObject to the desired (x,y) position in the given amount of time in seconds. It is used to

move items towards the player once they are pressed.

public abstract class GameObject
extends java.lang.Object

Field Detail

position
private final Vector2 position

Stores the bottom-bottom-center position of the GameObject

previousPosition
private final Vector2 previousPosition

Holds the GameObject's previous position before the current game tick.

oldVelocity
private final Vector2 oldVelocity

Stores the velocity of the gameObject the previous frame.

velocity
private final Vector2 velocity

Stores the velocity of the GameObject

acceleration
private final Vector2 acceleration

40

Stores the acceleration of the GameObject

collider
private Collider collider

Stores the collider used by the GameObject for collision

skeleton
private com.esotericsoftware.spine.Skeleton skeleton

Stores the Spine skeleton that controls the bones of the GameObject and its appearance.

terrainCell
private Cell terrainCell

Stores the row and column corresponding to the layer where the GameObject resides on the
TerrainLevel.

objectId
private int objectId

The GameObject's id, used to identify GameObjects inside a save file. Used to identify whether
or not a GameObject should be placed on a TerrainLayer.

stateTime
protected float stateTime

Stores the amount of time the GameObject has been in a specific state. (i.e., if the player has
been jumping for 0.5 seconds, stateTime = 0.5).

Constructor Detail

GameObject
public GameObject()

Creates a GameObject with a bottom-bottom-center at (0,0) and a rectangle collider with width/height of zero.

GameObject
public GameObject(float x, float y,float width, float height)

Creates a GameObject with bottom-center at (x,y) and rectangle collider with given width/height.

Parameters:

x - the center x-position of the GameObject (in world units)

y - the center y-position of the GameObject (in world units)

41

width - the width of the GameObject's rectangle collider

height - the height of the GameObject's rectangle collider

Method Detail

update
public abstract void update(float deltaTime)

Updates the GameObject's game logic.

Parameters:

deltaTime - the amount of time the last render call took to complete

updatePosition
public void updatePosition(float deltaTime)

Updates the position of the GameObject according to its velocity and acceleration.

updateCollider
public void updateCollider()

Snaps the GameObject's collider to the GameObject's position

canTarget
public abstract boolean canTarget()

Returns true if the GameObject can be targetted by a Human.

getPosition
public Vector2 getPosition()

Retrieves the bottom-center position of the gameObject as a Vector2. Operations can be
performed on the Vector2 using its instance methods, as it is mutable.

setPosition
public void setPosition(float x,float y)

Sets the bottom-center position of the GameObject at the desired (x,y) coordinates.

Parameters:

x - the center x-position in which to place the GameObject

y - the center y-position in which to place the GameObject

42

getX
public float getX()

Returns the bottom-center x-position of the GameObject.

setX
public void setX(float x)

Sets the center x-position of the GameObject.

getY
public float getY()

Returns the bottom-center y-position of the GameObject.

setY
public void setY(float y)

Sets the bottom y-position of the GameObject.

getPreviousPosition
public Vector2 getPreviousPosition()

Returns the GameObject's previous position before the current game tick.

getVelocity
public Vector2 getVelocity()

Retrieves the velocity of the gameObject as a Vector2. Operations can be performed on the
Vector2 using its instance methods, as it is mutable.

setVelocity
public void setVelocity(float x, float y)

Sets the velocity of the GameObject at their desired (x,y) values.

setVelocityX
public void setVelocityX(float x)

Updates the x-velocity of the GameObject.

setVelocityY
public void setVelocityY(float y)

Updates the y-velocity of the GameObject.

getAcceleration

43

public Vector2 getAcceleration()

Retrieves the acceleration of the gameObject as a Vector2. Operations can be performed on the
Vector2 using its instance methods, as it is mutable.

setAcceleration
public void setAcceleration(float x, float y)

Sets the acceleration of the GameObject at their desired (x,y) values.

moveTo
public void moveTo(float x, float y, float time)

Moves the GameObject to the desired (x,y) position in a straight line at the given speed in m/s.

Parameters:

x - the center x-position where to move the GameObject

y - the center y-position where to move the GameObject

time - the time it will take to move the GameObject to the designated position

isAbove
public boolean isAbove(GameObject gameObject)

Returns true if this GameObject is above the given GameObject.

Parameters:

gameObject - the GameObject which is tested to see if this GameObject is above this
parameter

Returns:

true, if the GameObject is above the given GameObject

getCollider
public <T extends Collider> T getCollider()

Returns the collider used by the gameObject for collisions.

setCollider
public void setCollider(Collider c)

Sets the collider used by the gameObject for collisions.

getSkeleton

44

public com.esotericsoftware.spine.Skeleton getSkeleton()

Returns the skeleton used to render the GameObject to the screen. Returns null if the
GameObject doesn't use a Spine skeleton.

setSkeleton
public void setSkeleton(com.esotericsoftware.spine.Skeleton skeleton)

Sets the spine skeleton used by the GameObject to be rendered on-screen.

getTerrainCell
public Cell getTerrainCell()

Gets the cell coordinates where the GameObject is placed on the TerrainLevel.

setTerrainCell
public void setTerrainCell(int row, int col)

Sets the cell coordinates where the GameObject is placed on the TerrainLevel.

getStateTime
public float getStateTime()

Gets the amount of time the GameObject has been in a specific state. (e.g., stateTime = 0.4 if
the GameObject has been in the JUMP state for 0.4 seconds.

setStateTime
public void setStateTime(float stateTime)

Sets the amount of time the GameObject has been in a specific state. Only the gameObject's
update() method should update this value.

getObjectId
public int getObjectId()

Gets the ID of the GameObject, used to identify a GameObject in a specific TerrainLayer.

setObjectId
public void setObjectId(int objectId)

Sets the ID of the GameObject, used to identify a GameObject in a specific TerrainLayer.

45

II.3.1.2 Human

Figure 19 : Human class diagram

46

 The Human class is the superclass of every GameObject that has some sort of intelligence

with regards to movement. The mode member variable dictates whether the Human is exploring

the world or in combat mode. If the human is in combat mode, the Human's game logic takes a

different code path inside its update() method.

 On a separate note, the state data field is another variable holding an enumeration

constant. It is used to dictate which state the human is in. It tells the human which action it is

currently performing. For instance, the Human can be in the WALK state or the JUMP state,

indicating that the player is currently walking or running. Changing the state of a Human

changes his current action.

 The direction instance variable defines whether the Human is facing left or right. A

Human also has a target. A target is a GameObject. It can be a tree, a box, or another Human.

The Human will walk towards his target if it is not null. If the data field is null, it has no effect

on the human's actions. The targetReached boolean is true if the Human has touched his target’s

collider.

The Human's constructor accepts four floats: the width and height of the object’s collider,

along with the x and y positions of the object upon instantiation.

 The abstract update() method updates the position of the Human. The loseTarget()

method simply sets the target member variable to null. This happens when the player chops

down a tree, for instance. In this case, the player has scavenged the tree, and thus has no more

target. He no longer needs to move towards said tree.

public abstract class Human
extends GameObject
implements com.badlogic.gdx.utils.Pool.Poolable

Field Detail

mode
protected Human.Mode mode

Stores the mode of the Human (EXPLORING or FIGHTING) used to determine how the
human's logic should be processed.

47

state
protected Human.State state

Stores the state of the Human (IDLE, WALK, etc.), usually used to dictate which animations to
play.

previousState
private Human.State previousState

Stores the previous state of the human. Used in humans' renderer. Animations are only
changed if the human's state changed from the previous render call.

direction
protected Human.Direction direction

Stores the direction the Human is facing

target
private GameObject target

Stores the GameObject where the human is trying to walk to. Null if the human has no target.

targetReached
private boolean targetReached

Holds true if the Human has reached his target.

health
private float health

Stores the human's health. Once it drops below zero, the human is dead.

invulnerabilityTime
private float invulnerabilityTime

Holds the amount of time that the Human is invulnerable to attacks.

walkSpeed
private float walkSpeed

Holds the walking speed of the human in the x-direction in meters/second.

Constructor Detail

48

Human
public Human(float x, float y, float width, float height)

Creates a Human GameObject instance whose bottom-center is at (x,y) and whose Rectangle
collider is initialized with the given width and height.

Parameters:

x - the center x-position of the Human (in world units)

y - the center y-position of the Human (in world units)

width - the width of the Human's rectangle collider

height - the height of the Human's rectangle collider

Method Detail

update
public void update(float deltaTime)

Updates the Human's game logic, such as his state time.

Specified by:

update in class GameObject

Parameters:

deltaTime - the amount of time the previous render call took to execute

loseTarget
public void loseTarget()

Lose the human's current target so that he stops walking towards his target.

isFacing
public boolean isFacing(Human other)

Returns true if the given human is facing the other human, and this human can thus see the
other one.

Parameters:

other - the Human he must be looking at to return true

Returns:

49

true, if this human is facing the given Human

getMode
public Human.Mode getMode()

Gets the mode (EXPLORING or FIGHTING) of the GameObject

setMode
public void setMode(Human.Mode mode)

Sets the mode (EXPLORING or FIGHTING) of the GameObject

getState
public Human.State getState()

Gets the state (IDLE, JUMP, etc.) of the GameObject, used to dictate which animations to use.

setState
public void setState(Human.State state)

Sets the state (IDLE, JUMP, etc.) of the GameObject, used to dictate which animations to use.
Also sets the stateTime of the GameObject back to zero.

getPreviousState
public Human.State getPreviousState()

Retrieves the previous state of the Human. Used to determine whether or not a GameObject's
state changes from one render call to the next.

setPreviousState
public void setPreviousState(Human.State previousState)

Sets the previous state of the Human. Used to determine whether or not a GameObject's state
changes from one render call to the next.

getDirection
public Human.Direction getDirection()

Gets the direction (LEFT or RIGHT) that the GameObject is facing.

setDirection
public void setDirection(Human.Direction direction)

Sets the direction (LEFT or RIGHT) that the GameObject is facing.

setTarget
public void setTarget(GameObject target)

50

Sets the target where the human wants to walk to.

Parameters:

target - the human's new target

getTarget
public GameObject getTarget()

Gets the target where the human wants to walk to.

isTargetReached
public boolean isTargetReached()

Returns true if the human has reached his target.

setTargetReached
public void setTargetReached(boolean targetReached)

Sets whether or not the human has reached his target.

getWalkSpeed
public float getWalkSpeed()

Gets the human's walking speed in the x-direction.

setWalkSpeed
public void setWalkSpeed(float walkSpeed)

Sets the human's walking speed in the x-direction in meters/second.

takeDamage
public void takeDamage(float damage)

Deals damage to the human by removing the given amount from its health.

Parameters:

damage - the damage dealt to the human

makeInvulnerable
public abstract void makeInvulnerable()

Makes the Human invulnerable for a given amount of seconds.

isInvulnerable
public boolean isInvulnerable()

51

Returns true if the Human is invulnerable to incoming attacks.

getInvulnerabilityTime
public float getInvulnerabilityTime()

Gets the amount of time that the Human is invulnerable for.

setInvulnerabilityTime
public void setInvulnerabilityTime(float invulnerabilityTime)

Sets the amount of time that the Human is invulnerable for.

getHealth
public float getHealth()

Gets the human's health.

setHealth
public void setHealth(float health)

Sets the human's health.

isDead
public boolean isDead()

Returns true if the Human's health has dropped to zero or below.

reset
public void reset()

Called whenever this box GameObject has been pushed back into a pool. In this case, we reset
the box's state back to default.

Specified by:

reset in interface com.badlogic.gdx.utils.Pool.Poolable

52

II.3.1.3 Player & Zombie

 The Player and Zombie classes both have similar member variables. First, the Player

class has public static final floats COLLIDER_WIDTH:float and COLLIDER_HEIGHT:float,

which indicate the size of their colliders. The MAX_WALK_SPEED:float constants indicate the

maximum walking speed of each entity. The JUMP_SPEED:float and FALL_SPEED:float

constants both indicate the vertical speed in metres per second when the player either jumps or

falls.

The player’s loadout holds the weapons equipped by the player, and the inventory holds

the items the player has collected or crafted. The playerListener instance is used by the World

class. The player delegates method calls to this instance for the world to be aware of any player

events.

The default constructors of both classes simply instantiate a Player or a Zombie at

position (0, 0) in the world. The second constructors accept the (x, y) position of the Player or

the Zombie as parameters.

(See next page for class diagrams)

53

Figure 17: Player and Zombie class diagrams

54

public class Player
extends Human

Field Detail

COLLIDER_WIDTH
public static final float COLLIDER_WIDTH

Stores the width of the player's rectangle collider in world units.

COLLIDER_HEIGHT
public static final float COLLIDER_HEIGHT

Stores the height of the player's rectangle collider in world units.

DEFAULT_HEALTH
public static final float DEFAULT_HEALTH

Holds the player's default health.

MAX_WALK_SPEED
public static final float MAX_WALK_SPEED

Stores the maximum walk speed of the player in the horizontal direction.

EXPLORATION_JUMP_SPEED
public static final float EXPLORATION_JUMP_SPEED

Stores the jump speed of the player in the vertical direction when in EXPLORING mode.

COMBAT_JUMP_SPEED
public static final float COMBAT_JUMP_SPEED

Stores the jump speed of the player in the vertical direction when in COMBAT mode.

FALL_SPEED
public static final float FALL_SPEED

Stores the downwards speed at which the player falls through a TerrainLayer.

HEAD_STOMP_DAMAGE
private static final float HEAD_STOMP_DAMAGE

Holds the amount of damage delivered to a zombie when it is stomped on the head by the
player.

HEAD_STOMP_JUMP_SPEED

55

private static final float HEAD_STOMP_JUMP_SPEED

Stores the speed at which the player jumps after hitting the zombie's head.

INVULNERABLE_TIME
public static final float INVULNERABLE_TIME

Holds the amount of time that the player is invulnerable when hit.

loadout
private Loadout loadout

Stores the player's loadout, containing the player's active weapons.

inventory
private Inventory inventory

Holds the player's inventory, which contains all of the player's collected items.

zombieToFight
private Zombie zombieToFight

Holds the zombie that the player will fight once he enters combat mode. Convenience member
variable to avoid large work-arounds.

playerListener
private PlayerListener playerListener

Stores the PlayerListener instance where methods are delegated upon player events.

Constructor Detail

Player
public Player()

Creates a player whose bottom-center is at position (0, 0).

Player
public Player(float x, float y)

Creates a player whose bottom-center is at position (x, y).

Parameters:

x - the center x-position where to place the player (in world coordinates)

56

y - the center x-position where to place the player (in world coordinates)

Method Detail

update
public void update(float deltaTime)

Updates the player's internal game logic.

Overrides:

update in class Human

Parameters:

deltaTime - the execution time of the previous render call

jump
public void jump()

Makes the player jump.

fall
public void fall()

Makes the player fall through one layer.

chopTree
public void chopTree()

Makes the player start chopping a tree

melee
public void melee()

Makes the player swing his melee weapon if he has one.

charge
public void charge()

Makes the player start to charge his gun. Call only once, when the player starts charging his
ranged weapon.

fire

public void fire()

57

Makes the player fire his ranged weapon

meleeHit
public void meleeHit(Zombie zombie)

Deals damage to the zombie with the player's melee weapon. Only deals damage if the player's
melee weapon is colliding with the given zombie.

Parameters:

zombie - the zombie to hit

fireWeapon
private void fireWeapon(Zombie zombie)

Fire the player's currently equipped ranged weapon at the given zombie.

Parameters:

zombie - the zombie to hit

hitTree
public void hitTree()

Called when the player has hit the tree stored as his target.

hitHead
public void hitHead(Zombie zombie)

Called when the player hits a zombie's head. Deals damage to this zombie and changes its
state.

Parameters:

zombie - the zombie to hit

checkDead
private void checkDead(Zombie zombie)

Checks if the zombie is dead. If so, plays the KO animation.

Parameters:

zombie - the zombie who is checked to be dead

useBullets

private void useBullets(int quantity)

58

Uses a given amount of bullets inside the player's inventory.

Parameters:

quantity - the quantity of bullets to lose

hasBullets
public boolean hasBullets()

Returns true if the player has bullets in his inventory.

getChargeCompletion
public float getChargeCompletion()

Returns a float between 0 and 1 representing the charge completion of the player's ranged
weapon. 1 means that the weapon is done charging completely.

regenerate
public void regenerate()

Regenerates the player to default health.

takeDamage
public void takeDamage(float amount)

Overrides the takeDamage() method to take note of when the player dies, in order to display the
KO animation.

Overrides:

takeDamage in class Human

Parameters:

amount - the amount of damage dealt to the player

loseLoot
public void loseLoot()

Makes the player lose all of the items in his inventory.

loseTarget
public void loseTarget()

Called when the player loses his target.

Overrides:

59

loseTarget in class Human

didWin
public boolean didWin()

Returns true if the player has won the game.

canTarget
public boolean canTarget()

Override the canTarget method as always returning false since the Player can never be
targetted.

Specified by:

canTarget in class GameObject

getMeleeWeapon
public MeleeWeapon getMeleeWeapon()

Returns the melee weapon that the player has equipped.

getRangedWeapon
public RangedWeapon getRangedWeapon()

Returns the ranged weapon that the player has equipped.

hasMeleeWeapon
public boolean hasMeleeWeapon()

Returns true if the player has a melee weapon equipped.

hasRangedWeapon
public boolean hasRangedWeapon()

Returns true if the player has a ranged weapon equipped.

hasRangedWeaponOut
public boolean hasRangedWeaponOut()

Returns true if the player has his ranged weapon out and visible.

getMeleeWeaponCollider
public Rectangle getMeleeWeaponCollider()

60

Returns the Collider of the player's melee weapon. Allows to test if the player has hit a zombie
with his weapon.

getCrosshair
public Line getCrosshair()

Returns the crosshair line, which dictates where the player's ranged weapon will fire and where
the bullet will travel.

getCrosshairPoint
public Vector2 getCrosshairPoint()

Returns the position where the weapon crosshair should be placed on the player in world units.
This is usually the tip of the player's ranged weapon.

makeInvulnerable
public void makeInvulnerable()

Makes the player invulnerable from attacks for a given amount of seconds.

Specified by:

makeInvulnerable in class Human

getLoadout
public Loadout getLoadout()

Retrieves the player's loadout containing the player's weapons.

setLoadout
public void setLoadout(Loadout loadout)

Sets the player's loadout.

getInventory
public Inventory getInventory()

Gets the loadout which stores the items held by the player.

setInventory
public void setInventory(Inventory inventory)

Sets the loadout which stores the items held by the player.

getZombieToFight

public Zombie getZombieToFight()

61

Returns the zombie that the player should fight once he enters combat mode. Set when the
player collides with a zombie.

setZombieToFight
public void setZombieToFight(Zombie zombieToFight)

Sets the zombie the player should fight once he enters combat mode. Set when the player
collides with a zombie.

setListener
public void setListener(PlayerListener listener)

Sets the given listener to have its methods delegated by the player instance.

public class Zombie
extends Human
implements Clickable

Field Detail

COLLIDER_WIDTH
public static final float COLLIDER_WIDTH

Stores the width of the zombie's rectangle collider in world units.

COLLIDER_HEIGHT
public static final float COLLIDER_HEIGHT

Stores the height of the zombie's rectangle collider in world units.

CHARGE_COLLIDER_WIDTH
public static final float CHARGE_COLLIDER_WIDTH

Stores the width of the zombie's charge collider in world units. The charge collider dictates the
region where the zombie can hit the player while charging.

CHARGE_COLLIDER_HEIGHT
public static final float CHARGE_COLLIDER_HEIGHT

Stores the height of the zombie's charge collider in world units. The charge collider dictates the
region where the zombie can hit the player while charging.

NORMAL_WALK_SPEED

public static final float NORMAL_WALK_SPEED

62

Stores the walk speed of the zombie in the horizontal direction.

COMBAT_WALK_SPEED
public static final float COMBAT_WALK_SPEED

Stores the walk speed of the zombie in the horizontal direction when in COMBAT mode.

ALERTED_WALK_SPEED
public static final float ALERTED_WALK_SPEED

Holds the walking speed of the zombie when he is following the player.

CHARGE_WALK_SPEED
public static final float CHARGE_WALK_SPEED

Stores the horizontal speed of the zombie when he is charging.

DEFAULT_CHARGE_DAMAGE
public static final float DEFAULT_CHARGE_DAMAGE

Holds the default amount of damage the CHARGE attack deals to the player.

ALERTED_ANIM_SPEED
public static final float ALERTED_ANIM_SPEED

Stores the multiplier of the zombie's walk animation when he is alerted and is following the
player.

JUMP_SPEED
public static final float JUMP_SPEED

Stores the jump speed of the zombie in the vertical direction.

FALL_SPEED
public static final float FALL_SPEED

Stores the downwards speed at which the zombie falls through a TerrainLayer.

INVULNERABLE_TIME
public static final float INVULNERABLE_TIME

Holds the amount of time that the zombie is invulnerable when hit.

DEFAULT_HEALTH
public static final float DEFAULT_HEALTH

Holds the player's default health.

63

alerted
private boolean alerted

Holds true if the Zombie is aware that the Player is within range of him. Makes him go towards
the player.

targetted
private boolean targetted

Stores true if the Zombie is being targetted by the player, and the player is trying to walk
towards it.

chargeCollider
private Rectangle chargeCollider

Stores the collider which goes around the zombie when he's charging. Determines if the zombie
has hit the player.

armCollider
private Rectangle armCollider

Holds the collider mapped to the zombie's arms. Used to dictate whether the zombie has hit a
player with his arms.

rightHandBone
private com.esotericsoftware.spine.Bone rightHandBone

Stores the bone which controls the zombie's right hand. Allows to compute the position and size
of the arm's collider.

leftHandBone
private com.esotericsoftware.spine.Bone leftHandBone

Stores the bone which controls the zombie's left hand. Allows to compute the position and size
of the arm's collider.

itemProbabilityMap
private java.util.HashMap<java.lang.Class,java.lang.Float>
itemProbabilityMap

Holds the HashMap of possible items that can be dropped from scavenging the Interactive
GameObject. Key is the type of item, and Float is the probability of it being dropped from 0
(least probable) to 1 (most probable).

animationState

private com.esotericsoftware.spine.AnimationState animationState

64

Controls the zombie's animations. Allows for crossfading between animations.

Constructor Detail

Zombie
public Zombie()

Creates a zombie whose bottom-center is at position (0, 0).

Zombie
public Zombie(float x,
 float y)

Creates a zombie whose bottom-center is at position (x, y).

Parameters:

x - the center x-position of the zombie (in world units)

y - the bottom y-position of the zombie (in world units)

Method Detail

setupItemProbabilityMap
private void setupItemProbabilityMap()

Called on zombie creation in order to populate the HashMap which dictates the probability of
certain items dropping when the zombie is killed.

updateColliders
public void updateColliders()

Updates the various colliders mapped to the zombie.

update
public void update(float deltaTime)

Updates the zombie's internal game logic.

Overrides:

65

update in class Human

Parameters:

deltaTime - the time elapsed since the last render call

jump
public void jump()

Makes the zombie jump.

fall
public void fall()

Makes the zombie fall through one layer.

chargeHit
public void chargeHit(Player player)

Make the zombie charge hit the player.

Parameters:

player - the player to hit

loseTarget
public void loseTarget()

Called when the zombie loses his target.

Overrides:

loseTarget in class Human

canTarget
public boolean canTarget()

Override the canTarget method as always returning false since the Zombie can never be
targetted.

Specified by:

66

canTarget in class GameObject

setState
public void setState(Human.State state)

Description copied from class: Human

Sets the state (IDLE, JUMP, etc.) of the GameObject, used to dictate which animations to use.
Also sets the stateTime of the GameObject back to zero.

Overrides:

setState in class Human

getAnimationState
public com.esotericsoftware.spine.AnimationState getAnimationState()

Retrieves the Spine AnimationState instance used to change the zombie's animations and
control them.

setAnimationState
public void setAnimationState(com.esotericsoftware.spine.AnimationStat
e animationState)

Sets the Spine AnimationState instance used to modify the zombie's animations and control
them.

isAlerted
public boolean isAlerted()

Returns true if the Zombie is aware that the Player is there.

setAlerted
public void setAlerted(boolean alerted)

Sets whether or not the Zombie is aware of the player. If so, the Zombie walks towards the
player

makeInvulnerable

public void makeInvulnerable()

67

Makes the zombie invulnerable from the player's attacks for a given amount of seconds.

Specified by:

makeInvulnerable in class Human

isTargetted
public boolean isTargetted()

Returns true if the zombie is being targetted by the player. If so, the player has clicked the
zombie, and is walking towards it.

setTargetted
public void setTargetted(boolean targetted)

Sets whether or not the zombie is being targetted by the player. If so, the player has clicked the
zombie, and is walking towards it.

getChargeCollider
public Rectangle getChargeCollider()

Gets the collider mapped to the zombie when he's charging. Used to determine if the zombie
has charge hit the player.

setChargeCollider
public void setChargeCollider(Rectangle chargeCollider)

Sets the collider mapped to the zombie when he's charging. Used to determine if the zombie
has charge hit the player.

getArmCollider
public Rectangle getArmCollider()

Returns the collider mapped to the zombie's arms. Used to dictate if the zombie melee hit the
player.

setArmCollider
public void setArmCollider(Rectangle armCollider)

Sets the collider mapped to the zombie's arms. Used to dictate if the zombie melee hit the
player.

68

getRightHandBone
public com.esotericsoftware.spine.Bone getRightHandBone()

Gets the bone mapped to the zombie's right hand. Allows to position the zombie's arm collider
to dictate if the zombie hit the player.

setRightHandBone
public void setRightHandBone(com.esotericsoftware.spine.Bone rightHand
Bone)

Sets the bone mapped to the zombie's right hand. Allows to position the zombie's arm collider to
dictate if the zombie hit the player.

getLeftHandBone
public com.esotericsoftware.spine.Bone getLeftHandBone()

Gets the bone mapped to the zombie's left hand. Allows to position the zombie's arm collider to
dictate if the zombie hit the player.

setLeftHandBone
public void setLeftHandBone(com.esotericsoftware.spine.Bone leftHandBo
ne)

Sets the bone mapped to the zombie's left hand. Allows to position the zombie's arm collider to
dictate if the zombie hit the player.

getItemProbabilityMap
public java.util.HashMap<java.lang.Class,java.lang.Float> getItemProba
bilityMap()

Returns the HashMap which holds which items will be dropped when this InteractiveObject is
scavenged. The key is the type of the Item dropped and the float is the probability of it dropping
from [0,1].

setItemProbabilityMap
public void setItemProbabilityMap(java.util.HashMap<java.lang.Class,ja
va.lang.Float> itemProbabilityMap)

Sets the HashMap which holds which items will be dropped when this InteractiveObject is
scavenged. The key is the type of the Item dropped and the float is the probability of it dropping
from [0,1].

69

reset
public void reset()

Called when the Zombie instance is put back into a pool. All his data fields must be reset to
default.

Specified by:

reset in interface com.badlogic.gdx.utils.Pool.Poolable

Overrides:

reset in class Human

II.3.1.4 InteractiveObject

Figure 20 : InteractiveObject class diagram

 An InteractiveObject represents a GameObject that can be scavenged by the player for

resources, such as a tree or a box. The interactiveState dictates the state of this GameObject. For

instance, it can be IDLE if the object is just standing there, or SCAVENGED if the player has

already scavenged the object. For instance, a tree enters the SCAVENGED state when it is

chopped down by the player.

70

 The itemProbabilityMap is a HashMap with a Class as a key, and a Float as a value. The

key holds an Item subclass (see II.3 Classes). The value mapped to the class is a number from 0

to 1.0, which indicates the probability of that item class from being spawned when the

InteractiveObject is scavenged. For instance, if itemProbabilityMap.get(Wood.class) is equal to

0.5, then there is a 50% chance that the InteractiveObject will drop wood when scavenged.

 The constructor accepts four floats: the width and height of the object’s collider, along

with the x and y positions of the object upon instantiation.

 The targetted() method is called whenever the InteractiveObject is targeted by a human.

In such as case, the object knows to transition to its TARGET state. The untargeted() method is

called when this object has been lost as a target. In this case, the object is set back to IDLE state.

 The update(float) method is called every game tick in order to update the object’s

position and stateTime. The abstract scavenged() method is called when the InteractiveObject

has been scavenged by the player.

public abstract class InteractiveObject
extends GameObject
implements Clickable, com.badlogic.gdx.utils.Pool.Poolable

Field Detail

interactiveState
private InteractiveObject.InteractiveState interactiveState

Stores the current state of the interactive object for logic and rendering purposes.

itemProbabilityMap
private java.util.HashMap<java.lang.Class,java.lang.Float>
itemProbabilityMap

Holds the HashMap of possible items that can be dropped from scavenging the Interactive
GameObject. Key is the type of item, and Float is the probability of it being dropped from 0
(least probable) to 1 (most probable).

Constructor Detail

71

InteractiveObject
public InteractiveObject(float x, float y, float width, float height)

Creates the Interactive GameObject with the given bottom-center position and the given collider
width and height.

Parameters:

x - the center x-position (in world units)

y - the center y-position (in world units)

width - the width of the rectangle collider

height - the height of the rectangle collider

Method Detail

targetted
public void targetted()

Called when the Interactive GameObject has just been targetted by a Human

untargetted
public void untargetted()

Called when the Interactive GameObject has just been untargetted by a Human

canTarget
public boolean canTarget()

Returns true if the Interactive GameObject can be targetted by the player.

Specified by:

canTarget in class GameObject

getInteractiveState
public InteractiveObject.InteractiveState getInteractiveState()

Gets the current state of the interactive object for logic and rendering purposes.

setInteractiveState

72

public void setInteractiveState(InteractiveObject.InteractiveState int
eractiveState)

Sets the current state of the interactive object for logic and rendering purposes.

getItemProbabilityMap
public java.util.HashMap<java.lang.Class,java.lang.Float> getItemProba
bilityMap()

Returns the HashMap which holds which items will be dropped when this InteractiveObject is
scavenged. The key is the type of the Item dropped and the float is the probability of it dropping
from [0,1].

setItemProbabilityMap
public void setItemProbabilityMap(java.util.HashMap<java.lang.Class,ja
va.lang.Float> itemProbabilityMap)

Sets the HashMap which holds which items will be dropped when this InteractiveObject is
scavenged. The key is the type of the Item dropped and the float is the probability of it dropping
from [0,1].

reset
public void reset()

Called whenever this GameObject has been pushed back into a pool. In this case, we reset the
box's state back to default.

Specified by:

reset in interface com.badlogic.gdx.utils.Pool.Poolable

update
public abstract void update(float deltaTime)

Called every frame to update logic.

Specified by:

update in class GameObject

Parameters:

deltaTime - the execution time of the previous render call

73

scavenged
public abstract void scavenged()

Called when the Interactive GameObject has been scavenged and can no longer be targetted.

II.3.1.5 Tree & Box

Figure 21 : Tree and Box class diagrams
 A Tree represents a physical tree in the world, whereas the Box class represents a

physical box. They bot hhave public static final COLLIDER_WIDTH:float and

COLLIDER_HEIGHT:float constants, which indicate the size of each of their colliders. The

Tree has his default health as a constant, along with a private health member variable, which

indicates how much damage the tree can receive from the player before being chopped down.

public class Box
extends InteractiveObject
implements com.badlogic.gdx.utils.Pool.Poolable

Field Detail

COLLIDER_WIDTH

74

public static final float COLLIDER_WIDTH

Stores the width of a box's rectangle collider in world units.

COLLIDER_HEIGHT
public static final float COLLIDER_HEIGHT

Stores the height of a box's rectangle collider in world units.

Constructor Detail

Box
public Box()

Creates a box whose bottom-center is at position (0, 0).

Box
public Box(float x, float y)

Creates a box whose bottom-center is at position (x, y).

Parameters:

x - the center x-position of the box (in world units)

y - the center y-position of the box (in world units)

Method Detail

update
public void update(float deltaTime)

Updates the box every frame.

Specified by:

update in class InteractiveObject

Parameters:

deltaTime - the execution time of the previous render call

75

setupItemProbabilityMap
private void setupItemProbabilityMap()

Called on box creation in order to populate the HashMap which dictates the probability of certain
items dropping when the box is destroyed.

scavenged
public void scavenged()

Called when the box has been opened by the player. Tells the box to enter its SCAVENGED
state.

Specified by:

scavenged in class InteractiveObject

public class Tree
extends InteractiveObject

Field Detail

COLLIDER_WIDTH
public static final float COLLIDER_WIDTH

Stores the width of a tree's rectangle collider in world units.

COLLIDER_HEIGHT
public static final float COLLIDER_HEIGHT

Stores the height of a tree's rectangle collider in world units.

DEFAULT_HEALTH
public static final float DEFAULT_HEALTH

Stores the default health of the tree.

health

private float health

76

Stores the tree's health. Once it drops below zero, it is destroyed.

Constructor Detail

Tree
public Tree()

Creates a tree whose bottom-center is at position (0, 0).

Tree
public Tree(float x, float y)

Creates a tree whose bottom-center is at position (x, y).

Parameters:

x - the center x-position (in world units)

y - the center y-position (in world units)

Method Detail

update
public void update(float deltaTime)

Updates the tree every frame.

Specified by:

update in class InteractiveObject

Parameters:

deltaTime - the amount of time elapsed since the last render call

reset
public void reset()

Called whenever this tree GameObject has been pushed back into a pool. In this case, we reset
the tree's state and health back to default.

Specified by:

77

reset in interface com.badlogic.gdx.utils.Pool.Poolable

Overrides:

reset in class InteractiveObject

setupItemProbabilityMap
private void setupItemProbabilityMap()

Called on tree creation in order to populate the HashMap which dictates the probability of
certain items dropping when the tree is destroyed.

takeDamage
public void takeDamage(float damage)

Deals damage to the tree by removing the given amount from its health.

Parameters:

damage - the amount of damage to deal

scavenged
public void scavenged()

Called when the tree's health has been depleted to zero and has been scavenged.

Specified by:

scavenged in class InteractiveObject

getHealth
public float getHealth()

Gets the tree's health.

setHealth
public void setHealth(float health)

Sets the tree's health.

78

II.3.1.6 Projectile

Figure 22: Projectile class diagram

 A Projectile models a GameObject which is fired at a certain velocity. It has a collider of

its own, and, upon colliding with another GameObject, a projectile will inflict damage to the

GameObject with which it collides.

public abstract class Projectile
extends GameObject

Field Detail

damage
private float damage

Stores the amount of damage the projectile deals when colliding with a Human.

fireVelocity
private final Vector2 fireVelocity

Holds the velocity at which the projectile will be fired. Note that this is in the right direction. The
vector is transformed to point to the left when desired.

Constructor Detail

Projectile

79

public Projectile()

Spawns a projectile at position (0,0) with collider size zero.

Projectile
public Projectile(float x, float y, float width, float height)

Creates a Projectile with the given (x,y) coordinates and the given collider size.

Parameters:

x - the center x-position (in world units)

y - the center y-position (in world units)

width - the width of the rectangle collider

height - the height of the rectangle collider

Method Detail

update
public void update(float deltaTime)

Updates the Projectile's game logic.

Specified by:

update in class GameObject

Parameters:

deltaTime - the execution time of the previous frame

fire
public void fire(float x, float y, Human.Direction direction)

Fires the projectile at the given bottom-center (x,y) position and in the given direction.

Parameters:

x - the center x-position at which to fire the projectile

y - the bottom y-position at which to fire the projectile

80

direction - the direction to fire the projectile

hit
public void hit(Human human)

Called when the projectile hits a Human. Deals damage to the hit Human.

Parameters:

human - the human to hit

getDamage
public float getDamage()

Gets the amount of damage dealt by the projectile when hitting a Human instance.

setDamage
public void setDamage(float damage)

Sets the amount of damage dealt by the projectile when hitting a Human instance.

getFireVelocity
public Vector2 getFireVelocity()

Gets the velocity at which the projectile is fired when the fire() method is called.

81

II.3.1.7 Earthquake

Figure 23: Earthquake class diagram

 An Earthquake instance is spawned whenever the zombie performs a smash attack. It

travels towards the player with a certain velocity, and, upon collision, deals damage to the

GameObject which which it collides.
public class Earthquake
extends Projectile

Field Detail

COLLIDER_WIDTH
public static final float COLLIDER_WIDTH

Stores the width of the Earthquake's rectangle collider in world units. (Smaller than actual image
so that collisions are forgiving)

COLLIDER_HEIGHT
public static final float COLLIDER_HEIGHT

Stores the height of the Earthquake's rectangle collider in world units. (Smaller than actual
image so that collisions are forgiving)

FIRE_VELOCITY_X
public static final float FIRE_VELOCITY_X

Holds the velocity at which the earthquake travels.

82

FIRE_VELOCITY_Y
public static final float FIRE_VELOCITY_Y

Holds the velocity at which the earthquake travels.

DAMAGE
public static final float DAMAGE

Stores the amount of damage dealt by the Earthquake when hitting a Human.

Constructor Detail

Earthquake
public Earthquake()

Creates a default Earthquake instance at bottom-center position (0,0).

Earthquake
public Earthquake(float x, float y)

Instantiates an Earthquake instance at the given bottom-center (x,y) position.

Parameters:

x - the center x-position of the earthquake (in world units)

y - the center y-position of the earthquake (in world units)

Method Detail

canTarget
public boolean canTarget()

Description copied from class: GameObject

Returns true if the GameObject can be targetted by a Human.

Specified by:

canTarget in class GameObject

83

II.4.1.8 ItemObject

Figure 24 : ItemObject class diagrams
 An ItemObject is a GameObject which displays an item. That is, when a player chops

down a tree, for instance, ItemObjects are spawned next to the tree. Subsequently, the player can

pick up these ItemObjects by clicking on them and gain an item in his inventory.

 The class's COLLIDER_WIDTH:float and COLLIDER_HEIGHT:float constants

indicate the size of the GameObject's rectangle collider. This is the region the player can press on

the object in order to collect it. The next four constants specify the minimum and maximum (x,y)

velocity of an ItemObject. This is needed when the item is spawned in the world, as it is

launched in the air in a parabolic arc. These constants determine the initial speed of the item

when it is spawned.

 Next, the itemState variable holds the state of the ItemObject. For example, if the item

was just spawned, it will be in ItemState.SPAWN state. Finally, and most importantly, the

itemClass instance variable holds the class which the ItemObject represents. This is because an

84

item is represented as two different things. First, each Item instance represents the data for an

item. It defines the name and properties of a specific item. An ItemObject instance, on the other

hand, is a physical representation of such an item. Thus, if itemClass holds the value of

Iron.class, then the ItemObject displays a picture of an iron plate.

 The default constructor spawns the GameObject at position (0,0), whereas the constructor

accepting two floats accepts the (x,y) position of the ItemObject. The most important method is

the spawn(Class, float, float, Direction):void method. This method is called whenever the

ItemObject should be spawned in the world. The first parameter accepts the class of the item that

wants to be spawned. The next two floats accept the (x,y) position where the ItemObject should

spawn. The last indicates whether the ItemObject should fly towards the left or the right when

spawned.

public class ItemObject
extends GameObject
implements com.badlogic.gdx.utils.Pool.Poolable

Field Detail

COLLIDER_WIDTH
private static final float COLLIDER_WIDTH

Stores the width of an item GameObject's collider. This is the touchable region of the item. All
Item GameObjects have the same collider size.

COLLIDER_HEIGHT
private static final float COLLIDER_HEIGHT

Stores the height of an item GameObject's collider. This is the touchable region of the item. All
Item GameObjects have the same collider size

DEFAULT_SPRITE_WIDTH
private static final float DEFAULT_SPRITE_WIDTH

Stores the default width of an item sprite

DEFAULT_SPRITE_HEIGHT

85

private static final float DEFAULT_SPRITE_HEIGHT

Stores the default height of an item sprite

MIN_Y_SPAWN_VELOCITY
private static final float MIN_Y_SPAWN_VELOCITY

Holds the minimum y-velocity of the Item GameObject when it is spawned.

MAX_Y_SPAWN_VELOCITY
private static final float MAX_Y_SPAWN_VELOCITY

Holds the maximum y-velocity of the Item GameObject when it is spawned.

MIN_X_SPAWN_VELOCITY
private static final float MIN_X_SPAWN_VELOCITY

Holds the minimum x-velocity of the Item GameObject when it is spawned.

MAX_X_SPAWN_VELOCITY
private static final float MAX_X_SPAWN_VELOCITY

Holds the maximum x-velocity of the Item GameObject when it is spawned.

itemState
private ItemObject.ItemState itemState

Stores the state of the item, which determines the animation it plays.

item
private Item item

Stores the Item held by the GameObject.

Constructor Detail

ItemObject
public ItemObject()

Creates an ItemObject at bottom-center position (0,0).

86

ItemObject
public ItemObject(int x, int y)

Creates an Item GameObject at the given bottom-center (x,y) position.

Parameters:

x - the center x-position where to place the ItemObject

y - the bottom x-position where to place the ItemObject

Method Detail

update
public void update(float deltaTime)

Description copied from class: GameObject

Updates the GameObject's game logic.

Specified by:

update in class GameObject

Parameters:

deltaTime - the amount of time the last render call took to complete

updateCollider
public void updateCollider()

Description copied from class: GameObject

Snaps the GameObject's collider to the GameObject's position

Overrides:

updateCollider in class GameObject

See Also:

Overriden to ensure that the ItemObject's collider is well
centered at the object's position

87

spawn
public <T extends Item> void spawn(float x, float y,
 float velocityMultiplier, Human.Direction direction)

Spawns the item at the given position. Gives the item a random upward velocity to simulate
confetti explosion. The position is the bottom-center position of the gameObject.

Parameters:

x - Center x-position where the item is spawned

y - Bottom y-position where the item is spawned

velocityMultiplier - Scalar by which velocity is multiplied, to allow certain items to
fly further. Allows items to be spread apart if many are spawned.

direction - Specifies the direction in which the items fly when spawned

canTarget
public boolean canTarget()

Description copied from class: GameObject

Returns true if the GameObject can be targetted by a Human.

Specified by:

canTarget in class GameObject

getItemState
public ItemObject.ItemState getItemState()

Gets the ItemState which determines which animation the object should be playing when
dropped into the world.

setItemState
public void setItemState(ItemObject.ItemState itemState)

Sets the ItemState which determines which animation the object should be playing when
dropped into the world.

getItem
public Item getItem()

88

Gets the item represented by the ItemObject.

setItem
public void setItem(Item item)

Sets the item the GameObject contains and displays.

reset
public void reset()

Called when an ItemObject is placed back into a pool. The GameObject must be reset to default
configuration.

Specified by:

reset in interface com.badlogic.gdx.utils.Pool.Poolable

89

II.3.1.9 Collider

Figure 25 : Collider class diagram

 A Collider represents a geometric shape bound to a GameObject. They are used to detect

collisions between one or more entities in the world. First, a Collider has a position denoted by a

Vector2. In the case of a rectangle, the (x,y) position represents the bottom-left point of the

shape.

 The Collider has two different constructors. The first intializes the position of the

Collider to (0,0), and the second places the Collider at the (x,y) position given by the two

parameters of the method. Then, the abstract intersects(Collider) method accepts a Collider

instance as a parameter, and returns true if the two Colliders intersect. The next overloaded

intersects(Vector2) method accepts a point on the screen denoted as a Vector2. It returns true if

the point is within the collider. Next, the insideCamera(OrthographicCamera) method returns

true if the collider intersects with the given camera. It is used for camera culling, and is

explained in detail in section II.1 Algorithms.

public abstract class Collider
extends java.lang.Object

Field Detail

position

protected final Vector2 position

90

Stores the position of the collider. If a rectangle collider is used, this position specifies the lower-
left position of the rectangle.

Constructor Detail

Collider
public Collider()

Creates a collider placed at (0,0).

Collider
public Collider(float x, float y)

Creates a collider placed at the desired (x,y) coordinates.

Parameters:

x - the x-position of the collider

y - the y-position of the collider

Method Detail

setPosition
public void setPosition(float x, float y)

Sets the position of the collider.

Parameters:

x - the new x-position of the collider

y - the new y-position of the collider

getPosition
public Vector2 getPosition()

Returns the position of the collider. Since Vector2s are mutable, the position can be changed
using the Vector2's instance methods.

intersects

public abstract boolean intersects(Collider r)

91

Returns true if this collider intersects with another collider.

Parameters:

r - the collider to test intersection with

Returns:

true, if this collider intersects the given collider.

intersects
public abstract boolean intersects(Vector2 point)

Returns true if this point is within the collider.

Parameters:

point - the point which is tested for instersection with the collider.

Returns:

true, if the collider intersects the given point.

insideCamera
public
abstract boolean insideCamera(com.badlogic.gdx.graphics.OrthographicCa
mera cam)

Returns true if this collider is inside the camera.

Parameters:

cam - the camera which is tested to be able to view the collider.

Returns:

true, if the collider is inside the viewable region of the camera.

92

II.3.1.10 Rectangle

Figure 26 : Rectangle class diagram

 The Rectangle class extends the Collider class. It is used to represent a bounding box

around a GameObject. It is the only type of Collider used in Free the Bob. The class's behaviour

is straight-forward, so its explanation will be brief. First, a Rectangle object has a width and a

height. The default constructor instantiates a Rectangle at bottom-left position (0,0), and with

width and height zero. The second constructor accepts the width and height of the Rectangle, and

the third accepts the (x,y) position of the Rectangle, along with its width and height.

public class Rectangle
extends Collider

Field Detail

width
private float width

Stores the width of the rectangle

height

93

private float height

Stores the height of the rectangle

Constructor Detail

Rectangle
public Rectangle()

Creates a rectangle at lower-left position (0,0) with width/height of zero

Rectangle
public Rectangle(float width, float height)

Creates a rectangle at lower-left position (0,0) with given width/height.

Parameters:

width - the width of the rectangle

height - the height of the rectangle

Rectangle
public Rectangle(float x, float y, float width, float height)

Creates a rectangle at lower-left position (x,y) with given width/height.

Parameters:

x - the center x-position of the rectangle

y - the bottom y-position of the rectangle

width - the width of the rectangle

height - the height of the rectangle

Method Detail

intersects
public boolean intersects(Collider c)

Returns true if this rectangle intersects with another collider.

94

Specified by:

intersects in class Collider

Parameters:

c - the collider to test intersection for

Returns:

true, if the rectangle intersects the given collider

intersects
public boolean intersects(Vector2 point)

Returns true if this point is within the rectangle.

Specified by:

intersects in class Collider

Parameters:

point - the point to test intersection for

Returns:

true, if the rectangle intersects the given point

insideCamera
public boolean insideCamera(com.badlogic.gdx.graphics.OrthographicCame
ra camera)

Returns true if this rectangle collider is inside the bounds of the camera. Used for camera
culling.

Specified by:

insideCamera in class Collider

Parameters:

camera - the camera which is tested to be able to view the rectangle.

95

Returns:

true, if the rectangle is inside the viewable region of the camera.

getTop
public float getTop()

Returns the y-position of the top of the collider in world units.

setSize
public void setSize(float width, float height)

Sets the width and height of the rectangle from its bottom-left position.

Parameters:

width - the width of the rectangle

height - the height of the rectangle

getWidth
public float getWidth()

Retrieves the width of the rectangle

setWidth
public void setWidth(float width)

Sets the width of the rectangle

getHeight
public float getHeight()

Gets the height of the rectangle

setHeight
public void setHeight(float height)

Sets the height of the rectangle

toString

96

public java.lang.String toString()

Returns a string representation of the rectangle, for debugging purposes.

Overrides:

toString in class java.lang.Object

See Also:

Object.toString()

(See next page for TerrainLayer)

97

II.3.1.11 TerrainLayer

Figure 27 : TerrainLayer class diagram (data fields)

98

Figure 28 : TerrainLayer class diagram (constructors and methods)

 A TerrainLayer is a piece of terrain on which the player can walk. It is represented as

either a constant, linear, or cosine function. Since a lot of its functionality was explained in

section II.1 Algorithms, the explanation of this class diagram will be shortened.

 First, each instance of this class has a row and a column relative to the world. From this

cell coordinate dictates the layer's geometry and the objects that are placed on top of it.

99

 On a separate note, the class has a leftPoint and a rightPoint Vector2. They store the

coordinates of the bottom-left end point and the bottom-right end point of the layer. These

Vector2s dictate the points where the layer's function should start and end. Next, if the layer is a

linear function, it will have a slope, stored inside a data field. Conversely, if the layer is a cosine

function, it will have an amplitude, stored inside another data field.

 Further, the class has a terrainType variable, which holds a constant from the

TerrainType enumeration (either CONSTANT, LINEAR, or COSINE). The type of the terrain

dictates how its geometry is defined.

 Next, the class has a worldSeed integer, which it uses to randomly generate numbers that

will define the layer's terrain, along with the objects placed on top of it. Additionally, the

TerrainLayer has access to a gameObjectManager variable, which allows the class to retrieve

pooled GameObjects to place on top of the layer.

 The first Random instance, terrainRand, is used to randomly generate numbers that will

determine the geometry of the layer. For instance, it will dictate the slope of a linear layer or the

amplitude of a cosine function. Conversely, the objectRand variable generates numbers that will

create and place objects on the layer.

 The class also has a profile variable, from which it accesses a list of all the objects that

have already been scavenged on the layer. This prevents the layer from placing objects on itself

that have already been destroyed or scavenged by the player. Moreover, the class has an array of

GameObjects. This array holds all of the GameObjects which are placed in the TerrainLayer. It

allows the world to fetch all of the GameObjects from each layer, update them and render them.

 The constructor of a TerrainLayer first accepts its row and column in the world, followed

by its x and y position, the Profile and the GameObjectManager instances from which the class's

data fields are populated.

 In terms of methods, resetLayer() is called whenever the layer's geometry and objects

need to be redefined. It is called when the layer shifts places inside the TerrainLevel's matrix and

changes cell coordinates. In turn, resetLayer() calls the resetLayer() and resetObjects() methods.

100

The former generates the layer's geometry, while the latter places GameObjects on the layer.

 Moreover, the addGameObject(GameObject):void method is called whenever an

ItemObject is dropped in the world. When this happens, it is passed as an argument to the

method and added the TerrainLayer's gameObjects array. As such, the ItemObject will belong to

the layer. Conversely, freeGameObjects() frees all of the GameObjects inside the GameObject

array back into the GameObjectManager's internal poolMap. As such, the GameObjects will be

recycled for another layer to use. The getGroundHeight(float) method accepts any x-position. It

returns the y-position of the ground at that specific x-position. It allows objects to know the

position of the ground. To function, it simply plugs in the x-position into the layer's constant,

linear or cosine function which in turn returns the y-point at that position. The

getBottomLayerHeight(float):float acts very similarly, except that it returns the y-position of the

bottom of the layer. This is the part of the layer that is drawn. Thus, this method is used to render

lines that represent the bottom of the layer. The getTopLayerHeight(float) returns the same y-

position, plus a certain height. This height is the vertical distance between two layers that are

stacked on top of each other.

 Finally, the last method that needs explaining is the setCell(row:int, col:int):void, which

simply sets the row and the column of the layer to the given parameters. It also calls the

resetLayer() method to re-initialize the layer according to its new cell coordinates.

Field Detail

row
private int row

Stores the row and column of the layer. Note that the row defines the layer's geometry.

col
private int col

Stores the row and column of the layer. Note that the row defines the layer's geometry.

LAYER_WIDTH

public static final float LAYER_WIDTH

101

Stores the width of a layer. The width is measured from the left end of the layer to the right end.
The height goes from the bottom y-position to the top y-position of any x-position on the layer. If
it is a cosine layer, it does not go from the bottom-most point to the top-most point; it is the
same regardless.

LAYER_HEIGHT
public static final float LAYER_HEIGHT

Stores the height of a layer. The height goes from the bottom y-position to the top y-position of
any x-position on the layer. If it is a cosine layer, it does not go from the bottom-most point to
the top-most point; it is the same regardless.

GROUND_HEIGHT
public static final float GROUND_HEIGHT

Stores the height from any bottom point of the layer to its ground point where the user walks

OBJECT_HEIGHT
public static final float OBJECT_HEIGHT

Stores the bottom height of objects on the layer. Increasing this places objects higher on the
layer.

OBJECT_SPACING
public static final float OBJECT_SPACING

Stores the minimum horizontal spacing between GameObjects on a layer.

MAX_SLOPE
public static final float MAX_SLOPE

Stores the maximum slope a linear layer can have

MIN_SLOPE
public static final float MIN_SLOPE

Stores the minimum slope a linear layer can have

MAX_AMPLITUDE

public static final float MAX_AMPLITUDE

102

Stores the maximum amplitude a cosine layer can have. (Note that amplitude = half-height of
cosine function)

MIN_AMPLITUDE
public static final float MIN_AMPLITUDE

Stores the minimum amplitude a cosine layer can have. (Note that amplitude = half-height of
cosine function)

COSINE_FREQUENCY
public static final float COSINE_FREQUENCY

Stores the b-value in a cosine function, the frequency, found by 2pi/period, where the period is
the width of the cosine function.

EDGE_MARGIN
public static final float EDGE_MARGIN

Holds the distance in meters. Determines how close a GameObject has to be to the layer's
edge be considered "near" the edge. Used in closeToEdge(...)

ZOMBIE_PROBABILITY_RATE
public static final float ZOMBIE_PROBABILITY_RATE

Holds the probability rate (0: lowest chance, 1: highest chance) that a zombie gets spawned on
the TerrainLayer.

leftPoint
private final Vector2 leftPoint

Stores the position of the bottom-left and bottom-right ends of the layer.

rightPoint
private final Vector2 rightPoint

Stores the position of the bottom-left and bottom-right ends of the layer.

slope
private float slope

103

Stores the slope of the layer if it is linear

amplitude
private float amplitude

Stores the amplitude of the layer if it is a cosine function

cosineXOffset
private float cosineXOffset

Stores the 'h' variable of the cosine function if the layer is a cosine function

cosineYOffset
private float cosineYOffset

Stores the 'k' variable of the cosine function if the layer is a cosine function

terrainType
private TerrainLayer.TerrainType terrainType

Stores the type of the terrain layer

terrainDirection
private TerrainLayer.TerrainDirection terrainDirection

Stores whether the terrain goes from left to right or from right to left.

worldSeed
private int worldSeed

Stores the world seed used to randomly generate the geometry of the layer.

goManager
private GameObjectManager goManager

Stores the GameObjectManager used to fetch GameObjects to populate the TerrainLayer with
objects.

terrainRand

private java.util.Random terrainRand

104

Stores the random object used to define the terrain geometry of the layer.

objectRand
private java.util.Random objectRand

Stores the random object used to define the objects stacked on the layer.

profile
private Profile profile

Stores the profile used to create the TerrainLayer. Specifies the world seed, and the
GameObjects already scavenged on each layer.

gameObjects
private com.badlogic.gdx.utils.Array<GameObject> gameObjects

Stores an array of all the GameObjects that are on this layer. If gameObjectsStored==true, the
array is already populated. Helper array to avoid GC.

gameObjectsStored
private boolean gameObjectsStored

Stores true if the gameObjects array has already been populated with the correct objects.
Prevents having to re-populate the array every frame.

trees
private com.badlogic.gdx.utils.Array<Tree> trees

Holds arrays containing the different types of GameObjects on the layer.

boxes
private com.badlogic.gdx.utils.Array<Box> boxes

zombies

private com.badlogic.gdx.utils.Array<Zombie> zombies

itemObjects
private com.badlogic.gdx.utils.Array<ItemObject> itemObjects

Stores an array of all the ItemObjects that have been dropped on this TerrainLayer. These items
can be picked up.

105

Constructor Detail

TerrainLayer
public TerrainLayer(int row, int col, float startX, float startY,
TerrainLayer.TerrainDirection terrainDirection, Profile profile,
GameObjectManager goManager)

Constructor used to create a terrain layer.

Parameters:

row - The row of the layer

col - The column of the layer

startX - The starting x-position of the layer, specified as the left-most x-position of the
layer if terrainDirection = RIGHT or the right-most x-position of the layer if
terrainDirection == LEFT.

startY - The starting y-position of the layer, specified as the bottom y-position of either
end of the layer.

terrainDirection - The direction the terrain faces. If TerrainDirection.RIGHT is
specified, the (startX,startY) parameters specify the bottom-left end-point of the layer

profile - Profile where the layer retrieves the world seed, along with information on
which GameObjects have already been scavenged.

goManager - The GameObjectManager which manages the World's GameObjects.
Used to populate the layer with objects.

Method Detail

resetLayer
public void resetLayer()

Resets the layer. Re-computes the geometry of the layer and the objects it contains depending
on its row and column. Must be called any time the layer is re-purposed to fit another row or
column.

resetTerrain
public void resetTerrain()

Resets and re-calculates the terrain geometry according to the world seed and the column
number of the layer.

106

resetObjects
public void resetObjects()

Resets the objects placed on the layer. This essentially places the correct objects on the layer
depending on its column and row.

canSpawnZombie
private boolean canSpawnZombie()

Returns true if a zombie can be spawned on this layer. The only reason it could not spawn is if
this layer is the one where the player has spawned.

freeGameObjects
public void freeGameObjects()

Frees the GameObjects stored inside the layer. Puts them back into the GameObjectManager's
pools, so that they can be reused. Called when the layer should be re-purposed into another
layer.

addGameObject
public void addGameObject(GameObject gameObject)

Adds the given GameObject to the list of GameObjects contained by the TerrainLayer. This
way, the GameObjectRenderer will know to render this GameObject.

Parameters:

gameObject - GameObject to add to the level.

removeGameObject
public void removeGameObject(GameObject gameObject)

Removes the given GameObject from the list of GameObjects contained by the TerrainLayer.
The GameObjectRenderer will know that it should not render the GameObject.

Parameters:

gameObject - GameObject to remove from the level.

getGameObjects

public com.badlogic.gdx.utils.Array<GameObject> getGameObjects()

107

Returns an array of all GameObjects contained in this layer.

getTrees
public com.badlogic.gdx.utils.Array<Tree> getTrees()

Returns an array consisting of all the Tree GameObjects that are on this layer.

getBoxes
public com.badlogic.gdx.utils.Array<Box> getBoxes()

Returns an array containing all the Box GameObjects that are on this layer.

getZombies
public com.badlogic.gdx.utils.Array<Zombie> getZombies()

Returns an array containing all the Zombies GameObjects that are on this layer.

getItemObjects
public com.badlogic.gdx.utils.Array<ItemObject> getItemObjects()

Returns an array consisting of all the Item GameObjects that have been dropped on this layer
and have yet to be picked up.

closeToEdge
public boolean closeToEdge(GameObject gameObject)

Returns true if the given GameObject is close to the edge of this TerrainLayer.

Parameters:

gameObject - The GameObject which is tested to be close to the layer's edge.

Returns:

true, if the GameObject is close to the edge of the TerrainLayer

getCenterX
public float getCenterX()

Gets the world x-position at the center of the terrain layer

108

getCenterGroundHeight
public float getCenterGroundHeight()

Gets the height of the ground at the center of the layer in world units.

getGroundHeight
public float getGroundHeight(float xPos)

Gets the ground height at any given x-position of the layer in world units.

Parameters:

xPos - The x-position of the TerrainLayer where the ground height must be found

Returns:

The y-position of the ground at the given x-position on the TerrainLayer.

getObjectHeight
public float getObjectHeight(float xPos)

Gets the GameObject height at any given x-position on the layer in world units.

Parameters:

xPos - The x-position where the object must be placed

Returns:

The y-position where objects should be placed on the layer, given the above x-position

getTopLayerHeight
public float getTopLayerHeight(float xPos)

Returns the y-position of the top of the layer at any given x-position in world units.

Parameters:

xPos - The x-position from which the TopLayerHeight is found (world units)

Returns:

Returns the y-position of the top of the layer at the given x-position

109

getBottomLayerHeight
public float getBottomLayerHeight(float xPos)

Retrieves the height of the bottom portion of the layer at a specified x-position.

Parameters:

xPos - The x-position where the bottom height of the layer is found

Returns:

the y-position of the bottom of the layer at the given x-position

setCell
public void setCell(int row, int col)

Sets the cell coordinates of the layer. The resetLayer() method must be called after this.

setRow
public void setRow(int row)

Sets the row of the layer. The resetLayer() method must be called after this.

getRow
public int getRow()

Gets the row of the layer.

setCol
public void setCol(int col)

Sets the column of the layer. The resetLayer() method must be called after this.

getCol
public int getCol()

Gets the column placement of the layer.

setStartPosition
public void setStartPosition(float startX, float startY,
 TerrainLayer.TerrainDirection terrainDirection)

110

Sets the start position of the terrain layer. Note that the specified position must either be the
coordinates for the bottom-left or bottom-right position of the layer in world coordinates. If
terrainDirection == TerrainDirection.RIGHT, the left coordinate must be specified. If
TerrainDirection.LEFT is passed, the right end-position must be specified.

Parameters:

startX - the starting x-position of the terrain

startY - the starting y-position of the terrain

terrainDirection - the direction at which the terrain is drawn (left to right or right to
left)

getLeftPoint
public Vector2 getLeftPoint()

Returns the bottom-left end point of the layer in world coordinates.

getRightPoint
public Vector2 getRightPoint()

Returns the bottom-right end point of the layer in world coordinates.

getTerrainType
public TerrainLayer.TerrainType getTerrainType()

Gets the terrain type of the layer, dictating what type of equation models its geometry.

toString
public java.lang.String toString()

Overrides:

toString in class java.lang.Object

II.3.1.12 Level

111

Figure 29 : Level class diagram

 The Level interface acts as a superclass to each level in the world, whether it be a

CombatLevel or a TerrainLevel. First, the getPlayerStartX():float and the getPlayerStartY():float

methods returns the x and y position where the player should be placed when the game is loaded.

Second, the interface has a getGroundHeight(float):float method, which accepts any x-position.

The y-position of the ground at that x-point will be returned. This y-position will dictate where a

GameObject should be placed to be to be right on top the ground. It allows the player to stay

locked to the ground at the correct height. Next, the addGameObject(GameObject) adds a

GameObject to a level subclass's gameObjects array. This added GameObject will then be drawn

to the screen when the level is displayed.

 Finally, the getGameObjects():Array<GameObject> returns an array of all the

GameObjects contained in the level. The world uses this list to update all of the level’s objects,

and the GameObjectRenderer uses it to render these same level objects.

public interface Level

Method Detail

getPlayerStartX
float getPlayerStartX()

Returns the x position where the player should spawn when the level is first created.

getPlayerStartY
float getPlayerStartY()

Returns the y position where the player should spawn when the level is first created.

112

getGroundHeight
float getGroundHeight(float xPos)

Returns the y-position of the ground in world coordinates at the specified x-position of the layer
in world coordinates.

outOfBounds
boolean outOfBounds(GameObject gameObject)

Returns true if the given GameObject is out of bounds of the level.

Parameters:

gameObject - the GameObject who's tested to be out of bounds of the level

Returns:

true, if the GameObject is out of bounds of the level

addGameObject
void addGameObject(GameObject go)

Adds the given GameObject to the level. Like this, the level will be aware that it contains this
GameObject, and this GameObject will be drawn to the screen.

Parameters:

go - the GameObject to add to the level

removeGameObject
void removeGameObject(GameObject go)

Removes the given GameObject from the level. Like this, the level will be aware that it no longer
contains this GameObject, and will thus no longer be drawn to the screen.

Parameters:

go - the GameObject to remove from the level

getGameObjects
com.badlogic.gdx.utils.Array<GameObject> getGameObjects()

113

Returns all the GameObjects contained in the level

II.3.1.13 TerrainLevel

Figure 30 : TerrainLevel class diagram (data fields)

 The TerrainLevel class was explained in detail in section II.1 Algorithms. Therefore, the

explanation of its class diagram will be shortened for the sake of brevity. First, the TerrainLevel

holds an array of GameObjects. These are the gameObjects contained in the level, such as

zombies, trees, or boxes. If this TerrainLevel is the currently-active level in the world, its

gameObjects array will be retrieved, and each GameObject will be updated and rendered. The

previousPosition Vector2 holds the position of the player before entering combat mode. If the

player beats the zombie, he will spawn at this position in the level once the player returns to

exploration mode. Next, the class holds a matrix of TerrainLayers. Each of these layers act as an

elementary function which the player can walk on.

 The constructor of the class accepts the Profile from which to generate the TerrainLevel.

Save data will be extracted from this instance in order to generate the level where the user last

ended when saving his profile. It also accepts the GameObjectManager, which it will give to

each TerrainLayer instance. These layers will then fetch pooled GameObjects from this

manager.

114

Figure 31 : TerrainLevel class diagram (constructors and methods)

 On a separate note, the shiftLayersUp/Down/Left/Right():void methods shift the

terrainLayers matrix up, down, left and right respectively. The methods are called so that the

player always remains in the center layer in the matrix. As such, if the player jumps, the

shiftLayersUp() method will be called and terrainLayers[0] will be shifted to

terrainLayers[terrainLayers.length-1], and the rest of the rows in the matrix will be rotated

down. Then, the bottom layers which are shifted to the top are reset so that they contain the

correct GameObjects which correspond to the layer’s new row. The three other methods work

115

similarly, but rotate the layers in different directions. Finally, the getCenterLayer():TerrainLayer

method returns the TerrainLayer in the center of the terrainLayers matrix. This is the

TerrainLayer where the player resides. The only getter that needs explaining is the

getTerrainLayer(Cell):TerrainLayer method, which returns the TerrainLayer at the given row

and column. Here, we can note that the row and column are relative to the layers, as they do not

act as indices for the two-dimensional terrainLayers matrix. The getTerrainLayer(row:int,

col:int):TerrainLayer acts similarly, except that it accepts the row and the column of the layer as

separate integers.

public class TerrainLevel
extends java.lang.Object
implements Level

Field Detail

NUM_LAYER_ROWS
public static final int NUM_LAYER_ROWS

Stores the number of rows of terrain layers that are displayed at once in a level. Should be odd
numbers so that the center layers are integers.

NUM_LAYER_COLS
public static final int NUM_LAYER_COLS

Stores the number of columns of terrain layers that are displayed at once in a level. Should be
odd numbers so that the center layers are integers.

START_X_POS
public static final float START_X_POS

Stores the left x-position of the first terrain layer. Only relevant when layers first created.

• START_Y_POS
public static final float START_Y_POS

Stores the bottom y-position of the first terrain layer. Only relevant when layers first created.

profile

private Profile profile

116

Stores the Profile instance used to create the TerrainLevel. This profile dictates where the
player should start, and where the TerrainLevel last left off.

trees
private com.badlogic.gdx.utils.Array<Tree> trees

Holds arrays containing the trees on the layer.

boxes
private com.badlogic.gdx.utils.Array<Box> boxes

Holds arrays containing the boxes on the layer.

zombies
private com.badlogic.gdx.utils.Array<Zombie> zombies

Holds arrays containing the zombies on the layer.

itemObjects
private com.badlogic.gdx.utils.Array<ItemObject> itemObjects

Stores an array of all the ItemObjects that have been dropped on this TerrainLayer. These items
can be picked up.

gameObjects
private com.badlogic.gdx.utils.Array<GameObject> gameObjects

Helper array used to store all the GameObjects in the level. Avoids activating the garbage
collector.

gameObjectsStored
private boolean gameObjectsStored

Stores true if the gameObjects array has already been populated with the GameObjects
contained in the level. Prevents having to re-populate the array every frame.

layers

TerrainLayer[][] layers

117

Stores the 2d array of TerrainLayers which make up the level's geometry. Note that [0][0] is the
bottom-left layer and that [NUM_LAYER_ROWS-1][NUM_LAYER_COLS-1] is always the top-
right-most layer.

Constructor Detail

TerrainLevel
public TerrainLevel(Profile profile, GameObjectManager goManager)

Creates a terrain level given a profile, which dictates how the terrainLayers should be
generated.

Parameters:

profile - The player's profile, used to create the TerrainLevel so that the user restarts
where he left off.

goManager - The GameObjectManager from which GameObjects are retrieved and
stored to be placed on individual TerrainLayers.

Method Detail

generateLayers
public void generateLayers(GameObjectManager goManager)

Generates the TerrainLayers for the level to display. The profile member variable populates
generate the layers the way they were before application quit. Accepts the
GameObjectManager used by the world. This allows each TerrainLayer to populate itself with
pooled GameObjects.

Parameters:

goManager - The GameObjectManager from which pooled GameObjects are retrieved
and placed on the TerrainLayer.

shiftLayersUp
public void shiftLayersUp()

Shifts the bottom TerrainLayers to the top. Called when the user moves up a layer.

shiftLayersDown
public void shiftLayersDown()

118

Shifts the top TerrainLayers to the bottom. Called when the user moves up a layer.

shiftLayersRight
public void shiftLayersRight()

Shifts the left TerrainLayers to the right. Called when the user moves to the right of the center
layer.

shiftLayersLeft
public void shiftLayersLeft()

Shifts the right-most TerrainLayers to the left. Called when the user moves to the left of the
center layer.

addGameObject
public void addGameObject(GameObject gameObject)

Adds the given GameObject to the TerrainLayer where it belongs. Allows the GameObject to be
added to the list of GameObjects contained by the correct TerrainLayer.

Specified by:

addGameObject in interface Level

Parameters:

gameObject - the GameObject to add to the level

removeGameObject
public void removeGameObject(GameObject gameObject)

Removes the given GameObject from the TerrainLayer where it belongs. Allows the
GameObject to be removed from the list of GameObjects of the correct TerrainLayer.

Specified by:

removeGameObject in interface Level

Parameters:

gameObject - the game object to remove from the level

getGameObjects

119

public com.badlogic.gdx.utils.Array<GameObject> getGameObjects()

Returns an array of all the GameObjects contained in the level.

Specified by:

getGameObjects in interface Level

getTerrainLayer
public TerrainLayer getTerrainLayer(int row, int col)

Returns the terrain layer with the given cell coordinates. Note that the layer must exist in the
current level's layer matrix.

Parameters:

row - The row of the TerrainLayer (relative to the world, not the terrainLayers[][] matrix)

col - The TerrainLayer's column (relative to the world, not the terrainLayers[][] matrix)

Returns:

The TerrainLayer at the given cell coordinates

getTerrainLayer
public TerrainLayer getTerrainLayer(Cell cell)

Returns the terrain layer with the given cell coordinates. Note that the layer must exist in the
current level's layer matrix.

getTerrainLayer
public TerrainLayer getTerrainLayer(GameObject gameObject)

Returns the terrain layer where the GameObject resides. Note that the layer must exist in the
current level's layer matrix, or an exception will occur.

inCenterRow
public boolean inCenterRow(TerrainLayer terrainLayer)

Returns true if the given TerrainLayer is in the center row of the level. This is the row where the
player resides.

Parameters:

120

terrainLayer - the terrain layer whose row to test

Returns:

true, if the given layer is at the center row of the level

outOfBounds
public boolean outOfBounds(GameObject gameObject)

Returns true if the given GameObject is out of bounds of the level. That is, if the GameObject is
outside the TerrainLayers of the level, the object is out of bounds. Note that this method only
checks if the x-position of the GameObject is out of bounds of the level. This is because the x-
position of the GameObject is the only one which should dictate whether the GameObject is out
of bounds of the level or not.

Specified by:

outOfBounds in interface Level

Parameters:

gameObject - the game object which is tested to be out of bounds of the level

Returns:

true, if the GameObject is out of bounds of the level

getCenterLayer
public TerrainLayer getCenterLayer()

Returns the TerrainLayer at the center of the level. This is the layer where the player resides.

getMiddleLayers
public TerrainLayer[] getMiddleLayers()

Returns an array of all the TerrainLayers in the middle of the level, in terms of height.

getBottomLeftLayer
public TerrainLayer getBottomLeftLayer()

Gets the bottom-left-most layer which visible in the level.

getTopRightLayer

121

private TerrainLayer getTopRightLayer()

Gets the top-right-most layer which visible in the level.

getGroundHeight
public float getGroundHeight(float xPos)

Returns the height of the ground at a given x-position. We retrieve the height of the ground for
the center layer, since none are specified.

Specified by:

getGroundHeight in interface Level

See Also:

Level.getGroundHeight(float)

getCenterRow
public int getCenterRow()

Returns the row of the TerrainLayer contained in the center of the level.

getCenterCol
public int getCenterCol()

Returns the column of the TerrainLayer at the center of the level.

getBottomLeftRow
public int getBottomLeftRow()

Returns the row of the TerrainLayer at the bottom-left of the level.

getBottomLeftCol
public int getBottomLeftCol()

Returns the column of the TerrainLayer at the bottom-left of the level.

getPlayerStartX
public float getPlayerStartX()

122

Returns the x-position where the user should spawn when he is first dropped in the level. In this
case, the center TerrainLayer of the level.

Specified by:

getPlayerStartX in interface Level

getPlayerStartY
public float getPlayerStartY()

Returns the y-position where the user should spawn when he is first dropped in the level. In this
case, the center layer of the level.

Specified by:

getPlayerStartY in interface Level

getTerrainLayers
public TerrainLayer[][] getTerrainLayers()

Returns the 2d array which stores the TerrainLayers which dictate the TerrainLevel's geometry.

setLevelLayers
public void setLevelLayers(TerrainLayer[][] layers)

Sets the TerrainLayer array used by the TerrainLevel. Calling this method is not recommended,
as it may cause unforeseen consequences.

getTrees
public com.badlogic.gdx.utils.Array<Tree> getTrees()

Gets the list of all trees contained in the level.

getBoxes
public com.badlogic.gdx.utils.Array<Box> getBoxes()

Gets the list of all boxes contained in the level.

getZombies
public com.badlogic.gdx.utils.Array<Zombie> getZombies()

123

Gets the list of all zombies contained in the level.

getItemObjects
public com.badlogic.gdx.utils.Array<ItemObject> getItemObjects()

Gets the list of all ItemObjects contained in the level.

(See next page for CombatLevel class)

124

II.3.1.14 CombatLevel

Figure 31 : CombatLevel class diagram

 The CombatLevel is used as the world's active level when the player is fighting against a

zombie. The zombie which the player is fighting is stored inside the zombie instance variable.

Conversely, the rightPoint and the leftPoint Vector2s hold the two end-points of the line used to

denote the level’s ground.

125

public class CombatLevel
extends java.lang.Object
implements Level

Field Detail

LEVEL_WIDTH
private static final float LEVEL_WIDTH

Stores the width of the level in meters. This is simply the length of the black line on the level.

LINE_HEIGHT
private static final float LINE_HEIGHT

Stores the y-position of the level's black line.

START_X
private static final float START_X

Holds the x-position at which the player and the zombie should reside relative to the center of
the level.

GROUND_HEIGHT
private static final float GROUND_HEIGHT

Stores the y-position at which the humans' feet should reside on the level

leftPoint
private final Vector2 leftPoint

Holds the left and right end points of the black line on the level.

rightPoint
private final Vector2 rightPoint

Holds the left and right end points of the black line on the level.

previousPlayerX

private float previousPlayerX

126

Holds the x-position of the zombie and the player before entering the CombatLevel. Allows them
to re-transition back to the TerrainLevel.

previousZombieX

private float previousZombieX

player
private Player player

Stores the player contained in the level who is fighting the zombie.

zombie
private Zombie zombie

Holds the Zombie contained in the level which is fighting the player.

projectiles
private com.badlogic.gdx.utils.Array<Projectile> projectiles

Stores the lists of each type of GameObject contained and rendered in the level.

gameObjects
private com.badlogic.gdx.utils.Array<GameObject> gameObjects

Helper array used to store all the GameObjects in the level. Avoids activating the garbage
collector.

gameObjectsStored
private boolean gameObjectsStored

Stores true if the gameObjects array has already been populated with the GameObjects
contained in the level. Prevents having to re-populate the array every frame.

Constructor Detail

CombatLevel
public CombatLevel()

Creates a default combat level

127

Method Detail

startFighting
public void startFighting(Player player, Zombie zombie)

Makes the given player and zombie start fighting on this CombatLevel.

Parameters:

player - The player engaging in combat

zombie - The zombie engaging in combat

stopFighting
public void stopFighting(Player player, Zombie zombie)

Makes the given player and the given zombie stop fighting. Resets their states and their
positions to cleanly switch to EXPLORATION mode.

Parameters:

player - The player meant to leave combat

zombie - The zombie meant to leave combat

getPlayerStartX
public float getPlayerStartX()

Returns the x-position where the player should start on the level.

Specified by:

getPlayerStartX in interface Level

getPlayerStartY
public float getPlayerStartY()

Returns the x-position where the player should start on the level.

Specified by:

getPlayerStartY in interface Level

getZombieStartX

128

public float getZombieStartX()

Returns the x-position at which the zombie should start on the level.

getZombieStartY
public float getZombieStartY()

Returns the x-position where the zombie should start on the level.

outOfBounds
public boolean outOfBounds(GameObject gameObject)

Returns true if the given GameObject has passed the left or right edge of the CombatLevel.

Specified by:

outOfBounds in interface Level

Parameters:

gameObject - the game object who is tested to be out of bounds of the level

Returns:

true, if the GameObject is out of bounds of the level

isPastLeftEdge
public boolean isPastLeftEdge(GameObject go)

Returns true if the given GameObject is past the left edge of the level.

Parameters:

go - the GameObject who is checked to be past the left edge of the combat level

Returns:

true, if the GameObject is past the left edge of the level

isPastRightEdge
public boolean isPastRightEdge(GameObject go)

Returns true if the given GameObject is past the right edge of the level.

129

Parameters:

go - the GameObject who is checked to be past the left edge of the combat level

Returns:

true, if the GameObject is past the right edge of the level

getGroundHeight
public float getGroundHeight(float xPos)

Returns the y-position of the ground at the given x-position.

Specified by:

getGroundHeight in interface Level

Parameters:

xPos - the x position of the level

Returns:

the ground height of the level at the given x-position

addGameObject
public void addGameObject(GameObject go)

Adds a GameObject to the level. Consequently, the GameObject will start to be updated and
rendered as part of the level.

Specified by:

addGameObject in interface Level

Parameters:

go - the GameObject to add to the level

removeGameObject
public void removeGameObject(GameObject go)

Removes a GameObject from the level. Consequently, the GameObject will no longer be
updated or rendered as a part of the level.

130

Specified by:

removeGameObject in interface Level

Parameters:

go - the GameObject to remove from the level

getGameObjects
public com.badlogic.gdx.utils.Array<GameObject> getGameObjects()

Description copied from interface: Level

Returns all the GameObjects contained in the level

Specified by:

getGameObjects in interface Level

See Also:

Level.getGameObjects()

getLeftPoint
public Vector2 getLeftPoint()

Gets the left end-point of the black line of the level.

getRightPoint
public Vector2 getRightPoint()

Gets the right end-point of the black line of the level.

getPlayer
public Player getPlayer()

Gets the player fighting on the level.

setPlayer
public void setPlayer(Player player)

Sets the player that is fighting on the level.

131

getZombie
public Zombie getZombie()

Gets the zombie fighting on the level.

setZombie
public void setZombie(Zombie zombie)

Sets the zombie that is fighting on the level.

getPreviousPlayerX
public float getPreviousPlayerX()

Gets the player's x-position before entering the combat level.

setPreviousPlayerX
public void setPreviousPlayerX(float previousPlayerX)

Sets the player's x-position before entering the combat level.

getPreviousZombieX
public float getPreviousZombieX()

Gets the zombie's x-position before entering the combat level.

setPreviousZombieX
public void setPreviousZombieX(float previousZombieX)

Sets the zombie's x-position before entering the combat level.

132

II.3.1.15 World

Figure 32 : World class diagram (data fields)

 Note: the class diagram for the World was too large to fit into a single page, and was thus

split into two different figures. See next page for second part of UML diagram.

The World class controls all game logic, such as character movement and zombie

movement. It holds a reference to the level being displayed by the game, along with the player

being controlled by the user.

 First, the gravity vector constant is used when the player jumps or falls from one layer to

another. It represents the gravity to which each GameObject in the world is subject to. The

Human's acceleration vector is set to this constant when he is jumping or falling. Next, the

worldSeed:int is the number seed used to generate the world and the objects inside of it. The

profile variable holds the Profile instance from which the world extracts save data information.

The next variable, worldState, holds an enumeration constant. It holds the current state of the

world. For instance, if the world is in FIGHTING state, the hud shown will be the Combat HUD.

133

Figure 33 : World class diagram (constructors and methods)

134

Further, the goManager holds the GameObjectManager which instantiates and pools

GameObjects. For example, when the world needs to drop an item in the world, it calls the

manager's methods and retrieves a new ItemObject instance. Next, the level variable holds the

level that the player is currently traversing. For instance, it can hold a reference to the

terrainLevel variable. The TerrainLevel is the level where the player walks around whilst

exploring the forest. If interior buildings are not implemented, the level variable will always hold

the same reference as the terrainLevel variable. This is due to the fact that the user is always

traversing the same terrain.

The player variable holds the Player instance that the user controls using touch input. On

the other hand, the eventListener variable holds an instance of the EventListener inner class. The

listener receives events pertinent to the world. For instance, if the player chops down a tree,

eventListener.scavengedObject() is called, and the world drops items next to the scavenged

object.

In terms of constructors, World(int, Profile) accepts the world seed used to randomly

generate the world along with the profile where save data is stored. It allows the world to

generate its terrain.

Alternatively, the update(float) method is called every game update. It updates every

GameObject in the game. Internally, it simply calls updatePlayer(float), which updates the

player's game logic, and updateLevelObjects(float), which updates the logic of each GameObject

contained inside the world’s level variable. Furthermore, the updateZombie(Zombie) method

updates the game logic of the zombie passed to the method's first and only parameter. It is

responsible for controlling the artificial intelligence of the zombie both in combat and

exploration mode. The updateItemObject(ItemObject,float) accepts the ItemObject whose game

logic needs to be updated. Its second parameter accepts the game tick’s deltaTime. In sum, the

method, updates every ItemObject dropped in the world that is waiting to be picked up.

Conversely, the walk() method is self-explanatory. It tells the player or a zombie to either

walk to the right or the left. The stopMoving(Human) method performs the opposite task. It takes

in a Human instance as a parameter and stops this instance from walking.

135

Additionally, setTarget(Human,GameObject) method accepts a Human instance, along

with any GameObject. It tells the given Human to target the given GameObject, subsequently

making the Human walk towards his new target. In combat mode, the fireWeapon(Player,

Weapon) method is called when the user fires his ranged weapon. The Player instance which

fired the shot is passed as the first argument, while the Zombie instance which the player shoots

is passed as the second argument. Internally, this method deals damage to the zombie and sets

him to HIT state. In terms of input handling, gameObjectClicked(GameObject) is called

whenever a GameObject is clicked in the world. It accepts the GameObject which was clicked as

a parameter.

In terms of collision detection, the checkPlayerCollisions() checks if the player has hit

any other GameObject. If the player has intersected with a zombie, for instance, the player will

transition to Combat mode. This method uses the helper method checkTargetCollisions() to

check for any intersections between the player and his target. To detect collisions with the

ground, the lockToGround(GameObject) is used. It ensures that the GameObject passed as an

argument is locked to the level’s ground. This allows all GameObjects to never fall below the

ground. The checkGroundCollision(GameObject) works hand in hand with the

lockToGround(GameObject) method. It takes in a GameObject as a parameter, and checks if it

has collided with the ground whilst in the air. It returns true, for instance, if the player jumps and

hit the ground. In such a case, the player is locked to the ground.

ItemObjects are placed in the world using the spawnItems(GameObject) method. It

spawns items next to the GameObject parameter. If the given GameObject is an

InteractiveObject, its itemProbabilityMap is used to dictate which items should be spawned next

to the object. To collect an item from the ground, the collectItemObject(ItemObject) is used. It is

called when the user clicks on an ItemObject. The object passed as an argument will be added to

the player's inventory.

Finally, the touchUp(float,float) is called whenever the screen is tapped. It receives the x

and y coordinate of the touch. It then calls the World’s methods in order to manage the touch.

public class World
extends java.lang.Object

136

Field Detail

GRAVITY_EXPLORATION
public static final Vector2 GRAVITY_EXPLORATION

Stores the acceleration due to gravity in the world in m/s^2 when the player is in exploration
state.

GRAVITY_COMBAT
public static final Vector2 GRAVITY_COMBAT

Stores the acceleration due to gravity in the world in m/s^2 when the player is fighting a zombie
in combat state.

worldSeed
private int worldSeed

Stores the seed used to generate the geometry of the level and randomly place its
GameObjects.

profile
private Profile profile

Stores the profile used to create the world from a save file.

worldState
private World.WorldState worldState

Stores the state of the world, which simply dictates the GUI the GameScreen should display.

goManager
private GameObjectManager goManager

Holds the GameObject Manager instance used to manage the GameObjects in the world.

zombieManager
private ZombieManager zombieManager

Stores the ZombieManager which updates zombies every game tick and controls their AI.

137

itemManager
private ItemManager itemManager

Holds the ItemManager instance. Used to pool and retrieve Item instances given to every
ItemObject spawned in the world..

level
private Level level

Stores the currently-active level of the world that is being displayed. Determines the walkable
area of the world.

terrainLevel
private TerrainLevel terrainLevel

Stores an instance of a terrain level, used when the player is outside in the procedurally-
generated terrain.

combatLevel
private CombatLevel combatLevel

Holds an instance of a combat level, used when the player is fighting a zombie in combat mode.

player
private Player player

Holds the Player GameObject that the user is guiding around the world.

worldListener
private WorldListener worldListener

Stores the WorldListener instance which delegates events from the World to the GameScreen.

eventListener
private World.EventListener eventListener

Listens to events delegated by the player.

soundListener

private SoundListener soundListener

138

Sends events to the GameScreen whenever a sound effect needs to be played.

touchPoint
private Vector2 touchPoint

Helper Vector2 used to store the world coordinates of the last known touch.

Constructor Detail

World
public World(int worldSeed, Profile profile, ItemManager itemManager)

Accepts the world seed from which terrain is generated, the profile from which save data is
retrieved, and the ItemManager from which Item instances are retrieved and given to
ItemObjects which are spawned in the world.

Parameters:

worldSeed - the world seed used to create the world's terrain

profile - the profile where all save information is loaded and used to generate the
world

itemManager - the manager which pools item objects and sprites to be displayed in
HUDs

Method Detail

update
public void update(float deltaTime)

Called every frame to update the world and its GameObjects.

Parameters:

deltaTime - the execution time of the last render call

updatePlayer
private void updatePlayer(float deltaTime)

Updates the player, his movement, and his game logic.

Parameters:

139

deltaTime - the execution time of the last render call

updatePlayerExploring
private void updatePlayerExploring()

Updates the player in the world when he's in EXPLORATION state, and is traversing the world.

updatePlayerCombat
private void updatePlayerCombat()

Updates the player when he is in COMBAT mode, fighting another zombie

updateLevelObjects
private void updateLevelObjects(float deltaTime)

Updates the GameObjects contained by the currently active level of the world.

Parameters:

deltaTime - the execution time of the last render call

updateItemObject
private void updateItemObject(ItemObject itemObject, float deltaTime)

Updates the Item Object's game logic. Note that an ItemObject is an item on the ground that
can be looted.

Parameters:

itemObject - the item object to update

deltaTime - the execution time of the last render call

updateProjectile
private void updateProjectile(Projectile projectile, float deltaTime)

Updates the given projectile checks for collisions and updates its position based on its velocity.

Parameters:

projectile - the projectile to update

deltaTime - the execution time of the last render call

140

walk
public void walk(Human human, Human.Direction direction)

This method is called once to make the human move in the given direction.

Parameters:

human - the human who wants to walk

direction - the direction in which to walk

stopMoving
public void stopMoving(Human human)

Stops the given Human GameObject from moving.

Parameters:

human - the human to stop moving

setTarget
public void setTarget(Human human, GameObject target)

Makes the player walk to the specified GameObject.

Parameters:

human - the human who is targetting the given target

target - the target that the human will move towards

gameObjectClicked
private void gameObjectClicked(GameObject gameObject)

Called when a GameObject in the level was touched.

Parameters:

gameObject - the GameObject which was clicked

playVersusAnimation

public void playVersusAnimation()

141

Makes the versus animation play. When finished the player switches to combat mode.

enterCombat
public void enterCombat()

Makes the player enter combat with the zombie he has collided with. Called from the
VersusAnimation class when the versus animation is finished playing.

exitCombat
public void exitCombat()

Makes the player leave COMBAT mode with the zombie he is fighting. Called after the KO
animation plays.

checkPlayerCollisions
private void checkPlayerCollisions()

Checks if the player is colliding with any GameObjects.

checkCombatCollisions
private void checkCombatCollisions()

Checks if the player has made any collisions whilst in COMBAT mode with another zombie.

checkTargetCollisions
private void checkTargetCollisions()

Checks if the player has collided with his target.

checkProjectileCollisions
private void checkProjectileCollisions(Projectile projectile)

Checks if the projectile has hit anything of interest. If, for instance, an earthquake hits the
player, the player takes damage.

Parameters:

projectile - the projectile whose bounding box is tested against other GameObjects
to check for collision

scavengeObject

142

private void scavengeObject(InteractiveObject scavengedObject)

Scavenges the given object and spawns items from it. Called when a box is opened or a tree is
destroyed.

Parameters:

scavengedObject - the InteractiveObject which will spawn items

lockToGround
public void lockToGround(GameObject gameObject)

Locks the GameObject to the ground when it is moving. Makes it so that the GameObject
follows the path of the ground.

Parameters:

gameObject - the game object to lock to the ground

checkForLayerSwitch
public void checkForLayerSwitch(GameObject gameObject)

Checks if the given GameObject has switched layers. If so, he is removed from his current
layer, and added to the one to which he moved to. Note that this only checks if the GameObject
has changed layers horizontally, not vertically.

Parameters:

gameObject - the game object who is checked for a horizontal layer switch

checkGroundCollision
public boolean checkGroundCollision(GameObject gameObject)

Returns true if the GameObject is jumping or falling and has fell past the ground.

Parameters:

gameObject - the game object which is tested to have touched the ground.

Returns:

true, if the GameObject was jumping or falling and has hit the ground

outOfBounds

143

public boolean outOfBounds(GameObject gameObject)

Returns true if the given gameObject is out of bounds of the world. A GameObject satisfies this
condition if it is out of bounds of the currently-active level.

Parameters:

gameObject - the game object to check for being out of bounds

Returns:

true, if the GameObject is out of bounds of the world's level

spawnItems
public void spawnItems(GameObject gameObject)

Spawns items at the GameObject's location. Called when a tree is chopped down or any other
GameObject is scavenged/destroyed.

Parameters:

gameObject - the game object from which items are spawned

collectItemObject
public void collectItemObject(ItemObject itemObject)

Makes the user pick up the given Item GameObject, removing the GameObject from the world
and adding it to the inventory.

Parameters:

itemObject - the item object to collect

spawnEarthquake
public void spawnEarthquake(Zombie zombie)

Make the zombie spawn an earthquake right under his feet, which will move towards the player
and try to hit him.

Parameters:

zombie - the zombie who shoots the earthquake. The earthquake is shot at the position
of one of his hands.

144

touchUp
public void touchUp(float x, float y)

Called when a touch was registered on the screen. Coordinates given in world units. O(n**2)

Parameters:

x - the world x-position of the touch

y - the world y-position of the touch

setupPlayer
public void setupPlayer()

Sets up the player's initial variables to ensure that the player is placed at the right location.

winGame
public void winGame()

Called when the player's TELEPORT animation is done playing. The player has thus won the
game.

closeToLayerEdge
public boolean closeToLayerEdge(GameObject gameObject)

Returns true if the GameObject is close to the left or right edges of his TerrainLayer.

Parameters:

gameObject - the game object who is checked to be next to his current layer's edge

Returns:

true, if the GameObject is close to the edge of the layer where he is currently residing.

playSound
public void playSound(SoundListener.Sound sound)

Plays the given sound. Delegates an event to the GameScreen through the soundListener to
play the particular sound.

Parameters:

145

sound - the sound to play

getLevel
public Level getLevel()

Returns the currently active level of the world used to dictate the walkable area the world.

setLevel
public void setLevel(Level level)

Sets the level used to determine the walkable area of the world. Also changes the GameObjects
on screen.

getTerrainLevel
public TerrainLevel getTerrainLevel()

Gets the TerrainLevel used by the world.

setTerrainLevel
public void setTerrainLevel(TerrainLevel terrainLevel)

Sets the TerrainLevel used by the world.

getCombatLevel
public CombatLevel getCombatLevel()

Retrieves the combat level of the world.

getWorldState
public World.WorldState getWorldState()

Returns the state of the world, used to tell the GameScreen how to render its GUI.

setWorldState
public void setWorldState(World.WorldState worldState)

Sets the state of the world. This can modify the way the GameScreen displays its GUI.

getGOManager

public GameObjectManager getGOManager()

146

Gets the GameObjectManager used to create and manager GameObjects in the world.

setGOManager
public void setGOManager(GameObjectManager goManager)

Sets the GameObjectManager used to create and manager GameObjects in the world.

getPlayer
public Player getPlayer()

Gets the player the user is controlling in the world.

setPlayer
public void setPlayer(Player player)

Sets the Player GameObject being controlled by the user.

getWorldListener
public WorldListener getWorldListener()

Retrieves the WorldListener which delegates World events to the GameScreen.

setWorldListener
public void setWorldListener(WorldListener worldListener)

Sets the WorldListener which delegates World events to the GameScreen.

getSoundListener
public SoundListener getSoundListener()

Returns the SoundListener which delegates events to the GameScreen whenever a sound
effect needs to be played.

setSoundListener
public void setSoundListener(SoundListener soundListener)

Sets the SoundListener which delegates events to the GameScreen whenever a sound effect
needs to be played.

147

II.3.1.16 WorldRenderer

Figure 34 : WorldRenderer class diagram

 The WorldRenderer is the master class which oversees all rendering operations. It holds

instances to other Renderers which draw batches of GameObjects.

 First, the WorldRenderer has two floating-point values: worldWidth and worldHeight.

These values mimic those found inside the abstract Screen class. In fact, they store the size of the

world in meters. In turn, this defines the size of the camera. Therefore, the worldWidth and

worldHeight act as the size of the camera used to render the world. Next, the class has an

instance of the World class which controls all GameObject logic. This World is then passed to

the goRenderer and the levelRenderer so that they can draw the GameObjects and the level

geometry.

 Next, the WorldRenderer has a SpriteBatch instance. This variable is the universal sprite

batcher used to render all visible objects to the screen. What a LibGDX SpriteBatch does is it

essentially gathers a batch of images for a specific texture. Then, when the batcher's drawing

method is called, it flushes all of the information to OpenGL in order to render images from

VRAM. However, the SpriteBatch instance must know where to draw the images to. This is

148

where the worldCamera comes into play. It defines the visible portion of the world where images

are drawn. The sprite batcher take the information about this visible region and draws images

within a confined space, relative to the camera's position and scale.

 Additionally, the class holds a levelRenderer variable, which draws level geometry to the

screen. Conversely, the goRenderer variable is used to draw all the GameObjects to the screen.

 The constructor of the WorldRenderer class accepts the World whose GameObjects it

will render, and the SpriteBatch used to draw these GameObjects to the screen. Then, the

renderer also has an updateCamera() method, which updates the camera's position every game

tick to follow the center of the player. On the other hand, the render(deltaTime:float) calls the

goRenderer and the levelRenderer's render(float) methods. The resize(width:float, height:float)

method is called whenever the screen is resized, or whenever the game is first created. It resizes

the camera in order to fit the screen's size.

public class WorldRenderer
extends java.lang.Object

Field Detail

worldWidth
private float worldWidth

Stores the width and height of the world. This is the viewable region of the world, in world units.
In other words, the camera size. The size is changed inside the resize() method according the
aspect ratio of the screen.

worldHeight

private float worldHeight

world
private World world

Stores the world whose level and gameObjects we render.

batcher
private com.badlogic.gdx.graphics.g2d.SpriteBatch batcher

149

Stores the SpriteBatcher used to draw the GameObjects.

worldCamera
private com.badlogic.gdx.graphics.OrthographicCamera worldCamera

Stores the OrthographicCamera used to view the world.

levelRenderer
private LevelRenderer levelRenderer

Stores the LevelRenderer used to render every type of level.

goRenderer
private GameObjectRenderer goRenderer

Stores the GameObjectRenderer which takes the world's data and renders it to the screen with
sprites.

animationRenderer
private AnimationRenderer animationRenderer

Holds the AnimationRenderer instance used to render all of the Spine animations which overlay
the screen.

effectRenderer
private EffectRenderer effectRenderer

Holds the EffectRenderer instance used to render all of the small effects on screen, such as the
crosshairs.

Constructor Detail

WorldRenderer
public WorldRenderer(World world,
 com.badlogic.gdx.graphics.g2d.SpriteBatch batcher)

Creates a WorldRenderer instance used to draw the given world instance with the given
SpriteBatch.

Parameters:

150

world - The World which is drawn

batcher - The SpriteBatch instance used to draw the world.

Method Detail

updateCamera
public void updateCamera()

Called every frame when the game is running to update the position of the camera. MUST be
called before render() method.

render
public void render(float deltaTime)

Called every frame to render the contents of the world and update the camera.

Parameters:

deltaTime - The amount of time the last render call took to execute

getWorldCamera
public com.badlogic.gdx.graphics.OrthographicCamera getWorldCamera()

Retrieves the world camera used to render the world.

getWorldCamera
public void getWorldCamera(com.badlogic.gdx.graphics.OrthographicCamer
a worldCamera)

Sets the world camera used to render the world.

resize
public void resize(float worldWidth, float worldHeight,
 float screenScale)

Called when the screen is resized, or when the world renderer is first created. Resizes the
camera to adjust to the new aspect ratio. Note that the parameters specify the new width and
height that the camera should have. Third parameter specifies a screen scale. This should be
the factor the view frustum had to be stretched to fit the target device. The level's line thickness
is multiplied by this factor to compensate for a larger or smaller screen.

151

Parameters:

worldWidth - The viewable width of the world in meters

worldHeight - The viewable height of the world in meters

screenScale - The amount by which the screen is scaled relative to the target
resolution of the application.

II.3.1.17 GameObjectRenderer

Figure 35 : GameObjectRenderer class diagram

 The GameObjectRenderer class draws all of the GameObjects in the world. It renders

everything aside from the elementary functions which form the terrain.

 First, the renderer has a reference to the World from which it gets the GameObjects it

needs to draw. Next, it has the SpriteBatch instance used to batch images and render them in a

single draw call. Further, the GameObjectRenderer has an instance of the worldCamera. This

camera defines the bounds which the GameObjects must be confined to. Also, the class has a

reference to a playerRenderer, a zombieRenderer, an interactiveObjectRenderer, and an

itemObjectRenderer. These are all helper classes used to draw specific GameObjects.

 The constructor of this class accepts the World instance where the renderer gets its

152

GameObject information, the SpriteBatch instance used to draw images, and the

OrthographicCamera used to display the world.

 The render(float) method extracts information from the World. It gather data about its

GameObjects, and relays it to interested renderers. Note that the renderLevelObjects() is a helper

method used to draw the GameObjects contained inside a specific TerrainLayer. It is called from

the render(float) method.

public class GameObjectRenderer
extends java.lang.Object

Field Detail

world
private World world

Stores the world whose level and gameObjects we render.

batcher
private com.badlogic.gdx.graphics.g2d.SpriteBatch batcher

Stores the SpriteBatcher used to draw the GameObjects.

assets
private Assets assets

Stores the Assets singleton which stores all of the visual assets needed to draw the
GameObjects.

worldCamera
private com.badlogic.gdx.graphics.OrthographicCamera worldCamera

Stores the OrthographicCamera where the GameObjects are drawn.

playerRenderer
private PlayerRenderer playerRenderer

Stores the PlayerRenderer instance used to render the Player GameObject.

153

interactiveObjectRenderer
private InteractiveObjectRenderer interactiveObjectRenderer

Stores the InteractiveObjectRenderer instance used to render any InteractiveObjects contained
in the world's current level.

zombieRenderer
private ZombieRenderer zombieRenderer

Holds the ZombieRenderer object used to render every Zombie instance.

itemObjectRenderer
private ItemObjectRenderer itemObjectRenderer

Holds the ItemObjectRenderer used to render any ItemObjects that have been dropped in the
world by scavenging GameObjects.

projectileRenderer
private ProjectileRenderer projectileRenderer

Stores the ProjectileRenderer instance used to draw projectiles to the screen.

Constructor Detail

GameObjectRenderer
public GameObjectRenderer(World world,
 com.badlogic.gdx.graphics.g2d.SpriteBatch batcher,

com.badlogic.gdx.graphics.OrthographicCamera worldCamera)

Accepts the world from which we find the GameObjects to draw, the SpriteBatch used to draw
the GameObjects, and the world camera where the GameObjects are drawn.

Parameters:

world - The World instance whose GameObjects are extracted and drawn

batcher - The SpriteBatch instance used to draw the GameObjects.

worldCamera - The camera instance where the GameObjects are drawn

Method Detail

154

render
public void render(float deltaTime)

Renders the World's GameObjects on-screen.

Parameters:

deltaTime - The amount of time passed in the last render call

renderLevelObjects
private void renderLevelObjects(float deltaTime)

Draws the GameObjects that are contained inside the world's level.

Parameters:

deltaTime - The amount of time passed in the last render call

II.3.1.18 LevelRenderer

Figure 36 : LevelRenderer class diagram

 A LevelRenderer is used to draw the world’s level geometry. Its existence is redundant

for our current implementation of the project. Only if interior buildings were implemented would

this class have a significant purpose. It simply delegates the render() call to the

TerrainRenderer.render() method. If interior buildings were implemented, this class’s purpose

would be to decide whether to call the TerrainRenderer or something like an InteriorRenderer.

155

However, in the current implementation of the game, only the TerrainRenderer is needed to

render level geometry.

 In terms of data, the LevelRenderer has a reference to the worldCamera, which it will

pass to the terrainRenderer. The class also holds a reference to a TerrainRenderer. As such, the

LevelRenderer acts as a master class which simply calls the drawing method of the level

renderer.

 The constructor of the class accepts the OrthographicCamera which acts as the

worldCamera instance variable that the renderer uses to draw the level’s geometry. Finally, the

render(Level) method accepts a level which it will draw to the screen.

public class LevelRenderer
extends java.lang.Object

Field Detail

worldCamera
private com.badlogic.gdx.graphics.OrthographicCamera worldCamera

Stores the camera where the terrain is drawn. In this case, the world camera.

batcher
private com.badlogic.gdx.graphics.g2d.SpriteBatch batcher

Stores the SpriteBatcher used to draw the level's elements.

terrainRenderer
private TerrainRenderer terrainRenderer

Stores the renderer used to draw terrain.

combatRenderer
private CombatRenderer combatRenderer

Holds the renderer used to draw the combat level's terrain.

Constructor Detail

156

LevelRenderer
public LevelRenderer(
 com.badlogic.gdx.graphics.g2d.SpriteBatch batcher,
 com.badlogic.gdx.graphics.OrthographicCamera worldCamera)

Creates a LevelRenderer used to render all the levels in the game.

Parameters:

batcher - The SpriteBatch instance used to draw the levels' geometry

worldCamera - The camera instance where the levels' geometry is drawn

Method Detail

render
public void render(Level level)

Renders a level's geometry. This method is a helper method which delegates the level instance
to a more specific renderer.

Parameters:

level - The level to draw

resize
public void resize(float screenScale)

Called whenever the screen is resized. The argument contains the factor by which the screen
had to be scaled compared to the target resolution. We have to rescale our lines by this factor
for the lines to look the same size no matter the screen.

Parameters:

screenScale - The scale of the screen relative to the target resolution

157

II.3.1.19 TerrainRenderer

Figure 37 : TerrainRenderer class diagram

 The TerrainRenderer class is used to draw terrain geometry. It takes all of the

TerrainLayers contained within the world's TerrainLevel and draws their geometry using line

rendering.

 The first constant defined in the class is DEFAULT_LINE_WIDTH. This constant defines

the default thickness of a line in world coordinates. In the game's predicted implementation, the

line thickness will not vary. However, the prefix of the constant is kept in case we find varying

line thicknesses more appealing as we continue development. The COSINE_SEGMENTS integer

defines the amount of lines that will be used to draw a cosine function.

 Next, the lineBounds rectangle is a helper variable. Whenever a line needs to be drawn,

the two end points of this line are fit inside a rectangle. If this rectangle is inside the camera's

view, the line is drawn to the screen. If not, the line is ignored. As always, the renderer also has a

reference to the worldCamera. It defines the viewing region where lines can be drawn. Next is

the shapeRenderer instance. The ShapeRenderer class is a pre-defined LibGDX class which

draws lines to the screen.

 The default constructor of the class accepts the worldCamera. Lines will be drawn only

inside this camera's viewable region. The render(float) method uses the ShapeRenderer to draw

the terrain using a series of lines which describe piecewise functions. However, whenever, a line

158

is about to be drawn, its bottom-left (x1,y1) position and top-right (x2,y2) position is passed to

the isInCamera(x1, y1, x2, y2):boolean. If the method returns true, the line is visible inside the

camera. Therefore, the line is drawn. If the method returns false, the line does not intersect with

the camera's viewable region. Thus, the line is not rendered, saving draw calls.

public class TerrainRenderer
extends java.lang.Object

Field Detail

DEFAULT_LINE_WIDTH
private static final float DEFAULT_LINE_WIDTH

Stores the default width of a line used to draw the geometry for the terrain. This is the width on
the game's target resolution

COSINE_SEGMENTS
private static final int COSINE_SEGMENTS

Stores the amount of segments used to draw a cosine function for a TerrainLayer.

lineBounds
private Rectangle lineBounds

Helper Rectangle used to check if a TerrainLayer can be seen by the camera.

worldCamera
private com.badlogic.gdx.graphics.OrthographicCamera worldCamera

Stores the camera where the terrain is drawn. In this case, the world camera.

shapeRenderer
private com.badlogic.gdx.graphics.glutils.ShapeRenderer shapeRenderer

Stores the ShapeRenderer instance used to draw the level geometry.

Constructor Detail

TerrainRenderer

159

public TerrainRenderer(com.badlogic.gdx.graphics.OrthographicCamera wo
rldCamera)

Accepts the camera where the terrain lines will be drawn.

Parameters:

worldCamera - The camera where the level's geometry is drawn

Method Detail

render
public void render(TerrainLevel level)

Renders the given terrainLevel's geometry using OpenGL ES lines.

Parameters:

level - The TerrainLevel to draw

isInCamera
public boolean isInCamera(TerrainLayer layer)

Returns true if the given layer is inside the viewable region of the world's camera.

Parameters:

layer - The TerrainLayer whose bounds are checked to see if it is viewable by the
worldCamera

Returns:

Returns true if the TerrainLayer is visible to the worldCamera.

isInCamera
public boolean isInCamera(float x)

Returns true if this x-position is within the viewing area of the world camera.

Parameters:

x - the world x-position to test with the camera

Returns:

160

true, if an object with the given x-position is within the camera's viewable region.

resize
public void resize(float screenScale)

Called whenever the screen is resized. The argument contains the factor by which the screen
had to be scaled to fit the device's screen We have to re-scale our lines by this factor for the
lines to look the same size no matter the screen.

Parameters:

screenScale - The amount by which the screen is scaled relative to the target
resolution of the application.

II.3.1.20 InteractiveObjectRenderer & ItemObjectRenderer

Figure 38 : InteractiveObjectRenderer class and the ItemObjectRenderer class diagrams

 The InteractiveObjectRenderer renders an InteractiveObject to the screen. The

ItemObjectRenderer, conversely, renders ItemObjects to the screen. Both classes have a

SpriteBatch instance which they use to draw their respective GameObjects.

 Their constructors accept the SpriteBatch the renderers will use for rendering. The

InteractiveObjectRenderer has a draw method which accepts an InteractiveObject to draw, along

with a boolean, which denotes whether or not the object should be drawn transparently. This is

true if the object is on a separate row than the player. In this case, the objects should be tinted

161

transparent to indicate that they cannot be pressed by the player. The ItemObjectRenderer has a

similar method, but rather accepts an ItemObject to draw on the screen. The second boolean

accepts whether or not to draw the object transparently. Finally, the InteractiveObjectRenderer

has helper methods drawTree(Tree, boolean) and drawBox(Box, boolean), which draws trees and

boxes, respectively, for the draw(InteractiveObject, boolean) method.

public class InteractiveObjectRenderer
extends java.lang.Object

Field Detail

batcher
private com.badlogic.gdx.graphics.g2d.SpriteBatch batcher

Stores the SpriteBatcher used to draw the GameObjects.

assets
private Assets assets

Stores the Assets singleton which stores all of the visual assets needed to draw the interactive
GameObjects.

TRANSPARENT_COLOR
private static final com.badlogic.gdx.graphics.Color TRANSPARENT_COLOR

Stores the color of transparent GameObjects.

workingColor
private com.badlogic.gdx.graphics.Color workingColor

Helper Color instance used to color GameObjects and avoid creating new color instances.

events
private com.badlogic.gdx.utils.Array<com.esotericsoftware.spine.Event>
events

Helper Array that's passed to the Animation.set() method.

Constructor Detail

162

InteractiveObjectRenderer
public InteractiveObjectRenderer(com.badlogic.gdx.graphics.g2d.SpriteB
atch batcher)

Accepts the SpriteBatch instance used to draw the Interactive GameObjects.

Parameters:

batcher - The SpriteBatch instance used to draw the InteractiveGameObjects.

Method Detail

draw
public void draw(InteractiveObject gameObject, boolean transparent)

Draws the given InteractiveObject. Accepts whether or not the GameObject should be drawn
transparent.

Parameters:

gameObject - The GameObject to draw

transparent - Whether or not the GameObject should be drawn transparent (if it is on
a separate lane than the player).

drawTree
private void drawTree(Tree tree, boolean drawTransparent)

Renders a Tree GameObject, which contains a Spine Skeleton instance which can be drawn to
the screen. Accepts whether or not it should be drawn transparent.

Parameters:

tree - The Tree instance to draw

drawTransparent - Whether or not the GameObject should be drawn transparent (if it
is on a separate lane than the player).

drawBox
private void drawBox(Box box, boolean drawTransparent)

Helper method called when a Box instance needs to be rendered. Second parameter accepts
whether box should be drawn transparent.

163

Parameters:

box - The Tree instance to draw

drawTransparent - Whether or not the GameObject should be drawn transparent (if it
is on a separate lane than the player).

public class ItemObjectRenderer
extends java.lang.Object

Field Detail

batcher
private com.badlogic.gdx.graphics.g2d.SpriteBatch batcher

Stores the SpriteBatch instance used to display the ItemObject.

assets
private Assets assets

Stores the Assets singleton which stores all of the visual assets needed to draw the interactive
GameObjects.

TRANSPARENT_COLOR
private static final com.badlogic.gdx.graphics.Color TRANSPARENT_COLOR

Stores the color of transparent GameObjects.

workingColor
private com.badlogic.gdx.graphics.Color workingColor

Helper Color instance used to color GameObjects and avoid creating new color instances.

events
private com.badlogic.gdx.utils.Array<com.esotericsoftware.spine.Event>
events

Constructor Detail

ItemObjectRenderer

164

public ItemObjectRenderer(com.badlogic.gdx.graphics.g2d.SpriteBatch ba
tcher)

Accepts the SpriteBatch instance used to render the ItemObjects passed to render().

Parameters:

batcher - The SpriteBatch instance which will be used to render the ItemObjects.

Method Detail

draw
public void draw(ItemObject itemObject, boolean transparent)

Draws the given ItemObject to the screen

Parameters:

itemObject - The ItemObject to draw

transparent - Whether or not the GameObject should be drawn transparent (if it is on
a separate lane than the player).

II.3.1.21 AnimationRenderer

Figure 39: Visual representation of the AnmationRenderer class

 The AnimationRenderer is responsible for drawing all of the animations to the screen.

There are two types of animations: the KoAnimation and the VersusAnimation. Animations are

165

screen overlays which display short animations. They are responsible for informing the user that

a certain event has occurred, such as the end of a battle.

public class AnimationRenderer
extends java.lang.Object

Field Detail

world
private World world

Stores the world, whose methods we call when certain animations are finished.

batcher
private com.badlogic.gdx.graphics.g2d.SpriteBatch batcher

Stores the SpriteBatcher used to draw the Spine animations.

worldCamera
private com.badlogic.gdx.graphics.OrthographicCamera worldCamera

Stores the OrthographicCamera where the Spine animations are drawn.

versusAnimation
private VersusAnimation versusAnimation

Holds the VersusAnimation instance used to display the animation of the player and the zombie
brawling before entering combat mode.

koAnimation
private KoAnimation koAnimation

Stores the KoAnimation instance, which plays the Ko animation when a character dies in
COMBAT mode.

Constructor Detail

AnimationRenderer
public AnimationRenderer(World world,
 com.badlogic.gdx.graphics.g2d.SpriteBatch batcher,
 com.badlogic.gdx.graphics.OrthographicCamera worldCamera)

166

Accepts the world from which we find the GameObjects to draw, the SpriteBatch used to draw
the Spine animations, and the world camera where the Spine animations are rendered.

Parameters:

world - The World instance, whose methods are called when certain animations finish.

batcher - The SpriteBatch instance used to draw the animations

worldCamera - The world's camera, where all animations are drawn.

Method Detail

render
public void render(float deltaTime)

Renders all necessary animations to the screen depending on the world's state.

Parameters:

deltaTime - The amount of time passed in the last render call

II.3.1.22 EffectRenderer

Figure 40: Visual representation of the EffectRenderer class

 The EffectRenderer renders visual effects. Currently, the only visual effect that is a part

of the game is the crosshair. It is displayed when the user charges his ranged weapon. The

EffectRenderer is a master class used to delegate a render call to the CrosshairRenderer when

appropriate.

167

public class EffectRenderer
extends java.lang.Object

Field Detail

world
private World world

Stores the world, whose methods we call when certain animations are finished.

batcher
private com.badlogic.gdx.graphics.g2d.SpriteBatch batcher

Stores the SpriteBatcher used to draw the Spine animations.

worldCamera
private com.badlogic.gdx.graphics.OrthographicCamera worldCamera

Stores the OrthographicCamera where the Spine animations are drawn.

crosshairRenderer
private CrosshairRenderer crosshairRenderer

Holds the CrosshairRenderer instance used to draw all of the gun crosshairs to the screen.

Constructor Detail

EffectRenderer
public EffectRenderer(World world,
 com.badlogic.gdx.graphics.g2d.SpriteBatch batcher,
 com.badlogic.gdx.graphics.OrthographicCamera worldCamera)

Accepts the world from which we find the effects to draw, the SpriteBatch used to draw the
effects, and the world camera where the effects are rendered.

Parameters:

world - The World instance, whose effects are drawn to the screen according to the
world's contents

batcher - The SpriteBatch instance which draws the effects to the screen

worldCamera - The camera where the effects are rendered

168

Method Detail

render
public void render(float deltaTime)

Renders all the effects that the World needs to display.

Parameters:

deltaTime - The amount of time passed in the last render call

II.3.1.23 ProjectileRenderer

Figure 41: Visual representation of the ProjectileRenderer class

 The ProjectileRenderer draws all of the projectiles to the screen. Currently, the only

projectile which it renders is the earthquake, as this is the only projectile we have included in the

game.

public class ProjectileRenderer
extends java.lang.Object

Field Detail

batcher
private com.badlogic.gdx.graphics.g2d.SpriteBatch batcher

Stores the SpriteBatch instance used to display the ItemObject.

assets

private Assets assets

169

Stores the Assets singleton which stores all of the visual assets needed to draw the interactive
GameObjects.

workingColor
private com.badlogic.gdx.graphics.Color workingColor

Helper Color instance used to color the projectiles and to avoid creating new color instances
every draw call.

events
private com.badlogic.gdx.utils.Array<com.esotericsoftware.spine.Event>
events

Constructor Detail

ProjectileRenderer
public ProjectileRenderer(com.badlogic.gdx.graphics.g2d.SpriteBatch ba
tcher)

Accepts the SpriteBatch instance used to render the Projectiles passed to the draw() method.

Parameters:

batcher - The SpriteBatch instance used to draw the projectiles

Method Detail

draw
public void draw(Projectile projectile)

Draws the given Projectile on-screen.

Parameters:

projectile - The projectile to draw

II.3.1.24 PlayerRenderer & ZombieRenderer

170

Figure 42 : PlayerRenderer class and ZombieRenderer class diagrams

 The PlayerRenderer renders the player, while the ZombieRenderer draws any given

Zombie instance to the screen. First, both classes have a SpriteBatch instance which they use to

render images. Moreover, the PlayerRenderer class has the player variable. It extracts the

player’s data from this variable and renders the player from this information.

 Next, the PlayerRenderer’s constructor accepts the Player instance it will draw. Then,

when its render(float) method accepts a deltaTime parameter, and draws its player variable to the

171

screen. The constructor also accepts the SpriteBatch instance it will use to populate the batcher

member variable. The render(float) method uses the helper methods updateAnimation() and

updateAttachments(). The former method updates the animation of the player, while the

updateAttachements() method selects which attachment should be given to the player. The Spine

animation engine uses the concept of attachments. Each attachment is essentially an image that is

added on top of a character. Thus, the method simply chooses which attachments the player

should display. For example, if the player is wearing an axe, updateAttachments() will ensure

that the image of the axe is attached to the player.

 Conversely, the ZombieRenderer constructor accepts only the SpriteBatch instance it

needs to render zombies. To draw a zombie, the render(Zombie, float, boolean) method is called.

It accepts the zombie to draw, along with the deltaTime parameter and a transparency boolean. If

true, the zombie is drawn transparently when it is on a different row than the player.

public class PlayerRenderer
extends java.lang.Object

Field Detail

world
private World world

Stores the world whose methods are called, for instance, when the player wins the game and
the world needs to be informed about it.

batcher
private com.badlogic.gdx.graphics.g2d.SpriteBatch batcher

Stores the SpriteBatcher used to draw the player's sprites.

assets
private Assets assets

Stores the Assets singleton which stores all of the visual assets needed to draw the player.

worldCamera

private com.badlogic.gdx.graphics.OrthographicCamera worldCamera

172

Stores the OrthographicCamera where the player is drawn.

player
private Player player

Stores the Player GameObject we draw to the screen by extracting its position and state.

playerSkeleton
private com.esotericsoftware.spine.Skeleton playerSkeleton

Stores the Spine skeleton instance used to display the player and play his animations.

rightHandBone
private com.esotericsoftware.spine.Bone rightHandBone

Holds the right hand bone on the player's skeleton in spine, which controls the player's
movements.

leftHandBone
private com.esotericsoftware.spine.Bone leftHandBone

Holds the left hand bone on the player's skeleton in spine, which controls the player's
movements.

gunTipBone
private com.esotericsoftware.spine.Bone gunTipBone

Holds the gun tip bone on the player's skeleton in spine, which is placed at the tip of the rifle.

meleeWeaponSlot
private com.esotericsoftware.spine.Slot meleeWeaponSlot

Stores the slot which displays the melee weapon on the player's skeleton.

rangedWeaponSlot
private com.esotericsoftware.spine.Slot rangedWeaponSlot

Stores the slot which displays the ranged weapon on the player's skeleton.

teleporterSlot

173

private com.esotericsoftware.spine.Slot teleporterSlot

Stores the slot which displays the teleporter on the player's skeleton.

axeAttachment
private com.esotericsoftware.spine.attachments.RegionAttachment
axeAttachment

Stores the RegionAttachment which store and display the images of the axe on the player.

rifleAttachment
private com.esotericsoftware.spine.attachments.RegionAttachment
rifleAttachment

Stores the RegionAttachment which store and display the images of the rifle on the player.

teleporterAttachment
private com.esotericsoftware.spine.attachments.RegionAttachment
teleporterAttachment

Stores the RegionAttachment which store and display the images of the teleporter on the player.

animStateData
private com.esotericsoftware.spine.AnimationStateData animStateData

Defines the crossfading times between animations.animationState

private com.esotericsoftware.spine.AnimationState animationState

Controls the animation of the player and applies the animations the player's skeleton.

animationListener
private
com.esotericsoftware.spine.AnimationState.AnimationStateListener
animationListener

Stores the AnimationStateListener that receives animation events.

HIT_TREE
private static final int HIT_TREE

Event triggered when player hits a tree.

174

HIT_ZOMBIE
private static final int HIT_ZOMBIE

Event triggered when player hits a zombie.

SOUND_FOOTSTEP
private static final int SOUND_FOOTSTEP

Event triggered when player's foot hits the ground.

Constructor Detail

PlayerRenderer
public PlayerRenderer(Player player, World world,
 com.badlogic.gdx.graphics.g2d.SpriteBatch batcher,
 com.badlogic.gdx.graphics.OrthographicCamera worldCamera)

Accepts the player GameObject to render, the world whose methods are called on animation
events, the SpriteBatch used to draw the player, and the world camera where the player is
drawn.

Parameters:

player - The player to draw

world - The World instance, whose methods are called when a player's animation
triggers events

batcher - The SpriteBatch instance used to draw the player

worldCamera - The camera instance where the player is drawn

Method Detail

setupAnimationStates
private void setupAnimationStates()

Populates the AnimationStateData and AnimationData instances used by the player.

render

public void render(float deltaTime)

175

Draws the player using his Spine skeleton, which stores his animations, sprites, and everything
needed to draw the player.

Parameters:

deltaTime - The amount of time taken for the previous render call

updateAnimation
private void updateAnimation()

Updates the current animation of the player depending on his state.

updateAttachments
private void updateAttachments()

Updates the attachments being rendered on the player.

updateWeaponAttachments
private void updateWeaponAttachments()

Updates the weapon being displayed on the player, depending on the weapon that the player is
currently using.

updateOtherAttachments
private void updateOtherAttachments()

Updates the miscalaneous attachments on the player to change which images are displayed on
him.

updateCrosshair
private void updateCrosshair()

Updates the registered position of the tip of the player's ranged weapon. Allows the crosshair to
be drawn at the correct position.

updateAttachmentColliders
private void updateAttachmentColliders()

Updates the position and scale of the collider on the player's equipped melee weapon.

176

public class ZombieRenderer
extends java.lang.Object

Field Detail

world
private World world

Stores the world whose methods are called, for instance, when an Earthquake needs to be
spawned by a zombie.

batcher
private com.badlogic.gdx.graphics.g2d.SpriteBatch batcher

Stores the SpriteBatcher used to draw the zombie's sprites.

assets
private Assets assets

Stores the Assets singleton which stores all of the visual assets needed to draw the zombie.

TRANSPARENT_COLOR
private static final com.badlogic.gdx.graphics.Color TRANSPARENT_COLOR

Stores the color of transparent zombies, when they are on different layers than the player.

TARGETTED_COLOR
private static final com.badlogic.gdx.graphics.Color TARGETTED_COLOR

Holds the color of the zombie when he is being targetted by the player.

animStateData
public static com.esotericsoftware.spine.AnimationStateData
animStateData

Defines the crossfading times between the zombies' animations.

animationListener
private com.esotericsoftware.spine.AnimationState.AnimationStateListen
er animationListener

177

Stores the AnimationStateListener that receives animation events.

workingColor
private com.badlogic.gdx.graphics.Color workingColor

Helper Color instance used to color the zombies and avoid creating new color instances.

HIT_GROUND
private static final int HIT_GROUND

Stores the integer assigned to the ''hit ground'' event in Spine. Used to indicate which event was
caught in the AnimationStateListener.

Constructor Detail

ZombieRenderer
public ZombieRenderer(World world,
 com.badlogic.gdx.graphics.g2d.SpriteBatch batcher)

Accepts the World instance whose methods are called when needed, and the SpriteBatch used
to draw the zombies.

Parameters:

world - The World instance whose methods are called when the Zombie's animations
trigger certain events

batcher - The SpriteBatch used to draw the Zombies.

Method Detail

setupAnimationStates
private void setupAnimationStates()

Populates the AnimationStateData and AnimationData instances used by the zombie.

draw
public void draw(Zombie zombie, boolean transparent, float deltaTime)

Draws the zombie using his Spine skeleton, which stores his animations, sprites, and everything
needed to draw the zombie. Accepts a boolean which depicts whether or not the zombie should
be drawn transparently.

178

Parameters:

zombie - The Zombie to draw

transparent - Whether or not the Zombie should be drawn transparently (if it is on a
different lane than the player)

deltaTime - The execution time of the previous frame

updateAnimation
private void updateAnimation(Zombie zombie)

Updates the current animation of the zombie according to his current state.

Parameters:

zombie - The Zombie whose animation must be updated

updateAttachments
private void updateAttachments(Zombie zombie)

Updates the attachments being rendered on the zombie.

Parameters:

zombie - The Zombie whose attachments are updated

updateColor
private void updateColor(Zombie zombie, boolean transparent)

Updates the zombie's color depending on whether its being targetted, and whether or not it
should be drawn transparent.

Parameters:

zombie - The Zombie whose color must be updated

transparent - Whether or not the zombie should be coloured transparent, if he is on a
different lane than the player.

updateTimeScale
private void updateTimeScale(Zombie zombie)

179

Updates the Zombie's TimeScale so that its animations play faster or slower, depending on the
zombie's current state.

Parameters:

zombie - The Zombie whose time scale will be updated.

II.3.1.25 Screen

Figure 43 : Screen class diagram

 The Screen class represents a window. Each principle GUI in the game is separated into a

Screen class. A subclass holds GUI widgets, and renders them to the screen. First, the game

variable holds the universal Survivor instance used by the game. The Survivor instance is a sort

of central hub to the game. It manages all of the screens in the game and decides when to switch

between them. A Screen instance holds a reference to this instance to ease communication

between the screens and the game.

180

 The guiWidth and guiHeight floating-points holds the width and height in pixels of the

graphical user-interface. This determines the size of the camera used to display the GUI.

Conversely, the worldWidth and worldHeight instance variables hold the size of the world in

meters. These dimensions are in the metric system to allow for optimal physics simulations. This

size, furthermore, is the size of the camera used to display the game. In fact, the world and the

GUI are rendered with two different cameras to allow both to use different coordinate systems.

 The screenScaleX and screenScaleY floating-point values store the amount the game has

to be stretched in the x and y axes in order to fit the Android device's screen size. This allows

for the game to stretch from its base resolution to the target device's resolution.

 Next, a Screen instance holds the assets variable, which is used to store the Assets

singleton. This allows for every screen to have easy access to the visual assets needed to render

the game. Furthermore, the Screen class has a profileManager. This is the manager which is used

to load information which was saved to the hard drive using Profile instances. The Settings class

allows any screen to save the game at any time using the Settings.save() method.

 In terms of constructors, the Screen simply accepts the Survivor instance used to create

the screen. On the other hand, the most important method in the Screen class is the render(float)

method, which accepts a deltaTime parameter, and uses it to draw any graphicals components to

the screen. The hide() method is called when the screen is changed. Its functionality is to call the

dispose() method, which subsequently frees any memory allocated to the Screen. Finally, the

resize(int, int):void method accepts the width and height of the Android device. It is called when

the screen is first displayed. Its purpose is to re-scale graphical assets to fit the device's

resolution.

public abstract class Screen
extends java.lang.Object
implements com.badlogic.gdx.Screen

Field Detail

game

protected Survivor game

181

Stores the game instance which created and manipulates this screen. Used for such things as
changing screens using Survivor.setScreen().

guiWidth
protected float guiWidth

Holds the width of a GUI camera. All assets drawn by a GUI camera are placed relative to these
dimensions. This is the viewing space available for the camera. The viewing space is then
stretched to fill the screen space. Note that their values are changed in resize() according to
aspect ratio.

guiHeight
protected float guiHeight

Holds the height of a GUI camera. All assets drawn by a GUI camera are placed relative to
these dimensions. This is the viewing space available for the camera. The viewing space is then
stretched to fill the screen space. Note that their values are changed in resize() according to
aspect ratio.

worldWidth
protected float worldWidth

Stores the width of a GUI camera. All assets drawn by a GUI camera are placed relative to
these dimensions. This is the viewing space available for the camera. The viewing space is then
stretched to fill the screen space. Note that their values are changed in resize() according to
aspect ratio.

worldHeight
protected float worldHeight

Stores the height of a GUI camera. All assets drawn by a GUI camera are placed relative to
these dimensions. This is the viewing space available for the camera. The viewing space is then
stretched to fill the screen space. Note that their values are changed in resize() according to
aspect ratio.

screenScaleX
protected float screenScaleX

Stores the amount we have to scale the x/y axis to fit the screen. That is, the game has a target
resolution of DEFAULT_GUI_WIDTH x DEFAULT_GUI_HEIGHT. These floats store how much

182

we have to stretch the width and height of this target resolution to fit the device. Used, in part, to
scale line thickness.

screenScaleY

protected float screenScaleY

assets
protected Assets assets

Holds the singleton instance of the assets class. Allows for screen subclasses to have easier
access to the visual/audio assets loaded from the assets instance.

musicManager
protected MusicManager musicManager

Stores the universal Music Manager used by the game controlling this screen. Allows screen to
play music and control its volume.

soundManager
protected SoundManager soundManager

Stores the universal Sound Manager used by the game controlling this screen. Allows screen to
play sound effects and control their volume.

profileManager
protected ProfileManager profileManager

Stores the universal Profile Manager used by the game controlling this screen. Used to access
profiles and their data.

prefsManager
protected PreferencesManager prefsManager

Holds the PreferencesManager instance used to access and modify the user's preferences.

settings
protected Settings settings

Stores the Settings instance used to save player information to the hard drive.

batcher

183

protected com.badlogic.gdx.graphics.g2d.SpriteBatch batcher

Stores the SpriteBatch instance used to draw sprites to this screen.

Constructor Detail

Screen
public Screen(Survivor game)

Instantiates a new screen.

Parameters:

game - the game instance which was used to create the screen. This game instance
holds valuable data for each screen.

Method Detail

render
public void render(float deltaTime)

Called every frame to update game logic or draw graphics to the screen.

Specified by:

render in interface com.badlogic.gdx.Screen

Parameters:

deltaTime - the execution time of the previous frame.

hide
public void hide()

Called when the user switches out of this screen. In this case, we dispose of the memory
allocated to the screen. This is because we never store instances of screens. Once the user
switches out of them, they are lost in memory. Thus, we need to free resources allocated to it.

Specified by:

hide in interface com.badlogic.gdx.Screen

dispose

184

public void dispose()

Called either when the Application is ended, or when the user switches out of this screen. Here,
we need to free resources used by the screen.

Specified by:

dispose in interface com.badlogic.gdx.Screen

resize
public void resize(int width, int height)

Called when the screen resizes, and when the screen is created.

Specified by:

resize in interface com.badlogic.gdx.Screen

Parameters:

width - the width of the screen

height - the height of the screen

185

II.3.1.26 CompanySplashScreen, LoadingScreen, MainMenuScreen & WorldSelectScreen

Figure 44 : CompanySplashScreen and the LoadingScreen class diagrams

 These Screen subclasses are all used to display the GUIs shown before the player enters

the game. Their appearance is shown inside section II.2 GUI. Their member variables all hold

the UI widgets used to interact with the screen. Thus, the description of some member variables

will be omitted as their purpose is self-explanatory.

public class CompanySplashScreen
extends Screen

Field Detail

guiCamera
private com.badlogic.gdx.graphics.OrthographicCamera guiCamera

Stores the camera displaying the GUI (Splash Image).

frameCount
private int frameCount

Holds the number of frames the game has been in this screen. Used to determine when the
splash screen should start loading assets.

TIME_SHOWN

186

private static final float TIME_SHOWN

Stores the amount of time the splash screen is shown before moving to the loading screen.

FADE_TIME
private static final float FADE_TIME

The amount of time it takes for the splash screen to fade out.

fading
private boolean fading

True if the splash screen has started fading.

fadeStartTime
private float fadeStartTime

Holds the time in seconds at which the splash screen has started fading.

timeElapsed
private float timeElapsed

Stores the time elapsed since the splash screen started showing.

Constructor Detail

CompanySplashScreen
public CompanySplashScreen(Survivor game)

Creates a new splash screen which displays the name of the application's creators. Accepts the
Survivor instance which controls this screen and calls its render() method.

Parameters:

game - the Game instance used to manage the screen

Method Detail

show

public void show()

187

Called when the screen first becomes visible.

See Also:

Screen.show()

render
public void render(float deltaTime)

Called every game tick to update and render the game.

Specified by:

render in interface com.badlogic.gdx.Screen

Overrides:

render in class Screen

Parameters:

deltaTime - the execution time of the previous frame.

See Also:

Screen.render(float)

update
private void update(float deltaTime)

Updates the widgets of the splash screen and its game logic before rendering them every
frame.

Parameters:

deltaTime - the execution time of the previous frame.

fadeWidgets
private void fadeWidgets()

Fades the widgets displayed in the splash screen for FADE_TIME seconds.

draw
private void draw(float deltaTime)

188

Draws the splash screen and all of its widgets.

pause
public void pause()

Called when the user hides the application or quits the game.

See Also:

Screen.pause()

resume
public void resume()

Called when the user re-opens the application after having left it.

See Also:

Screen.resume()

resize
public void resize(int width,int height)

Called when the screen resizes, or when the screen is created.

Specified by:

resize in interface com.badlogic.gdx.Screen

Overrides:

resize in class Screen

Parameters:

width - the width of the screen

height - the height of the screen

See Also:

Screen.resize(int, int)

189

public class LoadingScreen
extends Screen

Field Detail

PROGRESS_LABEL_X
private static final float PROGRESS_LABEL_X

Holds the center x-position of the progress label, relative to the center of the screen. That is,
x=0 places the label at the center of the screen.

PROGRESS_LABEL_Y
private static final float PROGRESS_LABEL_Y

Holds the center y-position of the progress label, relative to the center of the screen. That is,
y=0 places the label at the center of the screen.

HINT_LABEL_X
private static final float HINT_LABEL_X

Holds the center x-position of the hint label, relative to the center of the screen. That is, x=0
places the label at the center of the screen.

HINT_LABEL_Y
private static final float HINT_LABEL_Y

Holds the center y-position of the hint label, relative to the center of the screen. That is, y=0
places the label at the center of the screen.

PLAYER_X
private static final float PLAYER_X

Holds the left x-position of the player relative to the center of the screen. Note that this
measurement is in meters, not in pixels, and is thus much smaller.

PLAYER_Y
private static final float PLAYER_Y

Holds the center y-position of the player relative to the center of the screen. Note that this
measurement is in meters, not in pixels, and is thus much smaller.

190

HINT_DISPLAY_TIME
private static final float HINT_DISPLAY_TIME

Holds the amount of time a hint is displayed before switching to the next hint.

guiCamera
private com.badlogic.gdx.graphics.OrthographicCamera guiCamera

Stores the camera displaying the loading screen's GUI.

progressLabel
private com.badlogic.gdx.scenes.scene2d.ui.Label progressLabel

Holds the label showing a percentage of loading progress.

hintLabel
private com.badlogic.gdx.scenes.scene2d.ui.Label hintLabel

Holds the label showing hints which let the user pass time.

playerSkeleton
private com.esotericsoftware.spine.Skeleton playerSkeleton

Stores the skeleton instance which draws the player to the screen.

hints
private java.lang.String[] hints

Stores the list of all possible hints shown in the loading screen.

hintTime
private int hintTime

Stores the amount of time the current hint has been showing.

playerStateTime
private float playerStateTime

Holds the amount of time the player has been playing his current animation. Used to tell Spine
which time in the animation to play.

191

displayTime
private float displayTime

Stores the amount of time the loading screen has been displayed.

events
private com.badlogic.gdx.utils.Array<com.esotericsoftware.spine.Event>
events

Helper Array that's passed to the Animation.set() method when the player plays an animation.

Constructor Detail

LoadingScreen
public LoadingScreen(Survivor game)

Instantiates a new loading screen.

Parameters:

game - the game used to create the LoadingScreen

Method Detail

show
public void show()

Called when the screen becomes chosen as the screen for the game.

render
public void render(float deltaTime)

Called every game tick to update and render the game.

Specified by:

render in interface com.badlogic.gdx.Screen

Overrides:

render in class Screen

192

Parameters:

deltaTime - the execution time of the previous frame.

update
private void update(float deltaTime)

Updates the logic of the loading screen, positioning certain widgets and changing certain
elements.

Parameters:

deltaTime - the execution time of the previous frame.

drawGUI
private void drawGUI()

Draws the GUI for the Loading Screen

resize
public void resize(int width, int height)

Called when the screen resizes, and when the screen is created.

Specified by:

resize in interface com.badlogic.gdx.Screen

Overrides:

resize in class Screen

Parameters:

width - the width of the screen

height - the height of the screen

pause
public void pause()

Called when the user hides the application or quits the game.

193

resume
public void resume()

Called when the user re-opens the application after having left it.

Figure 45 : MainMenuScreen class and WorldSelectScreen class diagrams

 The WorldSelectScreen prompts the user to select a world from his list of created

profiles. The user can select one of these profiles and either load it or delete it.

public class WorldSelectScreen
extends Screen

Field Detail

194

WORLD_LIST_WIDTH
private static final float WORLD_LIST_WIDTH

Holds the width of the world selection list. That is, the width of the blue bar in pixels for the
target resolution (480x320).

WORLD_LIST_HEIGHT
private static final float WORLD_LIST_HEIGHT

Stores the height of the world selection list. This is the width in pixels at base resolution
(480x320).

BACKGROUND_X_OFFSET
private static final float BACKGROUND_X_OFFSET

Stores the x-offset of the background relative to the center of the stage.

BACKGROUND_Y_OFFSET
private static final float BACKGROUND_Y_OFFSET

Stores the y-offset of the background relative to the center of the stage.

BACK_BUTTON_X_OFFSET
public static final float BACK_BUTTON_X_OFFSET

Stores the xoffset used to anchor the back button to the bottom-right of the backpack
background with a certain padding.

BACK_BUTTON_Y_OFFSET
public static final float BACK_BUTTON_Y_OFFSET

Stores the y-offset used to anchor the back button to the bottom-right of the backpack
background with a certain padding.

stage
private com.badlogic.gdx.scenes.scene2d.Stage stage

Stores the stage used as a container for the UI widgets. It is essentially the camera that draws
the widgets.

195

inputListener
private WorldSelectScreen.InputListener inputListener

InputListener which receives an event when the BACK button is pressed on Android devices.
Allows the user to switch back to the main menu.

inputMultiplexer
private com.badlogic.gdx.InputMultiplexer inputMultiplexer

Class allowing us to set multiple instance of InputListeners to receive input events.

table
private com.badlogic.gdx.scenes.scene2d.ui.Table table

Stores the table actor. This actor arranges the widgets at the center of the screen in a grid-like
fashion.

worldSelectBackground
private TiledImage worldSelectBackground

Holds the background for the WorldSelectScreen, which is formed by a tiles of two images.

header
private com.badlogic.gdx.scenes.scene2d.ui.Label header

Stores the label displaying the header.

startButton
private com.badlogic.gdx.scenes.scene2d.ui.TextButton startButton

Holds the "Start" button

deleteButton
private com.badlogic.gdx.scenes.scene2d.ui.TextButton deleteButton

Holds the "Delete" button

backButton

private com.badlogic.gdx.scenes.scene2d.ui.Button backButton

196

Stores the button used to go back to the main menu.

confirmDialog
private ConfirmDialog confirmDialog

Holds the confirm dialog shown when the user presses the 'delete' button.

profileButtons
private com.badlogic.gdx.utils.Array<com.badlogic.gdx.scenes.scene2d.u
i.TextButton> profileButtons

Stores the list of buttons which the user can press to load a saved profile.

profileButtonTable
private com.badlogic.gdx.scenes.scene2d.ui.Table profileButtonTable

Stores a table containing all of the profile buttons, arranged in a vertical list. The user can scroll
through it in a scroll pane and select an profile.

buttonListener
private WorldSelectScreen.ButtonListener buttonListener

Holds the Listener which registers the profile button clicks. The selectedProfileId:int integer is
updated when a profile button is pressed.

buttonGroup
private com.badlogic.gdx.scenes.scene2d.ui.ButtonGroup buttonGroup

Holds the ButtonGroup instance used to ensure that only one profile button can be checked at a
time.

scrollPane
private com.badlogic.gdx.scenes.scene2d.ui.ScrollPane scrollPane

Stores the ScrollPane which allows the items in the survival guide to be scollable.

selectedProfileId
private int selectedProfileId

Stores the id of the selected profile in the profile list.

197

Constructor Detail

WorldSelectScreen
public WorldSelectScreen(Survivor game)

Instantiates a new world select screen.

Parameters:

game - the game instance used to create and manage the screen.

Method Detail

show
public void show()

Called when the screen is first shown

createWorldList
private void createWorldList()

Creates the world selection list, fetching the profiles to figure out what each item in the list
should state.

createButtonList
private void createButtonList()

Creates the profile buttons and adds them to the profileButtons array, and to the
profileButtonTable.

createProfileButton
private com.badlogic.gdx.scenes.scene2d.ui.TextButton createProfileBut
ton(int profileId)

Creates and returns a profile button which displays the information about a profile. Such a
button is placed in the profile list.

Parameters:

profileId - the id of the profile which the button will display

Returns:

198

a new text button which displays the profile information for the given ID. Meant to be
placed inside the profile list.

deleteProfile
private void deleteProfile(int index)

Deletes the profile with the given index. The index corresponds to the item chosen in the world
select list.

Parameters:

index - the id of the profile to delete

render
public void render(float deltaTime)

Renders the screen.

Specified by:

render in interface com.badlogic.gdx.Screen

Overrides:

render in class Screen

Parameters:

deltaTime - the execution time of the previous frame.

resize
public void resize(int width, int height)

Called when the screen resizes, and when the screen is created.

Specified by:

resize in interface com.badlogic.gdx.Screen

Overrides:

resize in class Screen

Parameters:

199

width - the width of the screen

height - the height of the screen

dispose
public void dispose()

Called either when the Application is ended, or when the user switches out of this screen. Here,
we need to free resources used by the screen.

Specified by:

dispose in interface com.badlogic.gdx.Screen

Overrides:

dispose in class Screen

pause
public void pause()

Called when the user hides the application or quits the game.

resume
public void resume()

Called when the user re-opens the application after having left it.

fadeIn
public void fadeIn()

Plays a fade in animation when the user enters this screen.

backPressed
public void backPressed()

Called when either the visual BACK button is pressed, or when the Android BACK button is
pressed. Move the user back to the main menu,

 The MainMenuScreen is the initial screen which is displayed when the application

200

finishes loading. It simply prompts the user to press the Play button.

public class MainMenuScreen
extends Screen

Field Detail

stage
private com.badlogic.gdx.scenes.scene2d.Stage stage

Stores the stage used as a container for the UI widgets. It is essentially the camera that draws
the widgets.

inputListener
private MainMenuScreen.InputListener inputListener

InputListener which receives an event when the BACK button is pressed on Android devices.
Allows the user to exit the game on back press.

inputMultiplexer
private com.badlogic.gdx.InputMultiplexer inputMultiplexer

Class allowing us to set multiple instance of InputListeners to receive input events.

table
private com.badlogic.gdx.scenes.scene2d.ui.Table table

Stores the table actor. This simply arranges the widgets at the center of the screen in a grid
fashion.

BUTTON_Y_OFFSET
private static final float BUTTON_Y_OFFSET

Stores the number of pixels that the buttons are offset down-wards. This offset ensures that the
buttons are below the game's logo.

playButton
private com.badlogic.gdx.scenes.scene2d.ui.TextButton playButton

Stores the play button.

201

optionsButton
private com.badlogic.gdx.scenes.scene2d.ui.TextButton optionsButton

Holds the options button instance.

logoImage
private com.badlogic.gdx.scenes.scene2d.ui.Image logoImage

Stores the image for the logo, displayed at the center of the screen.

LOGO_X_OFFSET
private static final float LOGO_X_OFFSET

Stores the x-offset of the logo relative to the center of the stage.

LOGO_Y_OFFSET
private static final float LOGO_Y_OFFSET

Stores the y-offset of the logo relative to the center of the stage.

BACKGROUND_X_OFFSET
private static final float BACKGROUND_X_OFFSET

Stores the x-offset of the background relative to the center of the stage.

BACKGROUND_Y_OFFSET
private static final float BACKGROUND_Y_OFFSET

Stores the y-offset of the background relative to the center of the stage.

mainMenuBackground
private TiledImage mainMenuBackground

Holds the background for the MainMenuScreen. This background is formed by a tiles of two
images.

quitConfirmDialog

private ConfirmDialog quitConfirmDialog

202

Holds the confirm dialog shown when the user presses the Android 'back' button, and wants to
quit the game.

Constructor Detail

MainMenuScreen
public MainMenuScreen(Survivor game)

Instantiates a new main menu screen.

Parameters:

game - the game instance used to create the screen

Method Detail

show
public void show()

Called when the screen becomes chosen as the screen for the game.

fadeIn
private void fadeIn()

Plays the animations of the widgets fading in to the screen.

fadeOut
private void fadeOut()

Make the UI elements fade out once one of the buttons are pressed.

render
public void render(float deltaTime)

Renders the screen.

Specified by:

render in interface com.badlogic.gdx.Screen

Overrides:

203

render in class Screen

Parameters:

deltaTime - the execution time of the previous frame

resize
public void resize(int width, int height)

Called when the screen resizes, or when the screen is created.

Specified by:

resize in interface com.badlogic.gdx.Screen

Overrides:

resize in class Screen

Parameters:

width - the width of the screen

height - the height of the screen

dispose
public void dispose()

Called when the application closes, or when the user leaves the screen to free up resources
allocated to the screen.

Specified by:

dispose in interface com.badlogic.gdx.Screen

Overrides:

dispose in class Screen

pause
public void pause()

Called when the user hides the application or quits the game.

204

resume
public void resume()

Called when the user re-opens the application after having left it.

backPressed
public void backPressed()

Called when either the visual BACK button is pressed, or when the Android BACK button is
pressed. Move the user back to the main menu,

205

II.3.1.27 MainMenuLoadingScreen

Figure 46: MainMenuLoadingScreen class diagram

 The MainMenuLoadingScreen is displayed when the user goes into the pause menu,

presses Quit, and confirms the opened dialog. This screen loads all of the assets needed to

display the main menu, and transitions the player to the main menu.

 Inside the loading screen, helpful hints are displayed to the user. This prevents the user

from becoming bored in front of a loading screen.
public class MainMenuLoadingScreen
extends Screen

Field Detail

206

LOADING_LABEL_X
private static final float LOADING_LABEL_X

Holds the center x-position of the loading label, relative to the center of the screen. That is, x=0
places the label at the center of the screen.

LOADING_LABEL_Y
private static final float LOADING_LABEL_Y

Holds the center y-position of the loading label, relative to the center of the screen. That is, y=0
places the label at the center of the screen.

HINT_LABEL_X
private static final float HINT_LABEL_X

Holds the center x-position of the hint label, relative to the center of the screen. That is, x=0
places the label at the center of the screen.

HINT_LABEL_Y
private static final float HINT_LABEL_Y

Holds the center y-position of the hint label, relative to the center of the screen. That is, y=0
places the label at the center of the screen.

PLAYER_X
private static final float PLAYER_X

Holds the left x-position of the player relative to the center of the screen. Note that this
measurement is in meters, not in pixels, and is thus much smaller.

PLAYER_Y
private static final float PLAYER_Y

Holds the center y-position of the player relative to the center of the screen. Note that this
measurement is in meters, not in pixels, and is thus much smaller.

HINT_DISPLAY_TIME
private static final float HINT_DISPLAY_TIME

Holds the amount of time a hint is displayed before switching.

207

guiCamera
private com.badlogic.gdx.graphics.OrthographicCamera guiCamera

Stores the camera displaying the loading screen's GUI.

loadingLabel
private com.badlogic.gdx.scenes.scene2d.ui.Label loadingLabel

Holds the label which states "Loading" at the center of the screen.

hintLabel
private com.badlogic.gdx.scenes.scene2d.ui.Label hintLabel

Holds the label showing hints which let the user pass time.

playerSkeleton
private com.esotericsoftware.spine.Skeleton playerSkeleton

Stores the skeleton instance which draws the player to the screen.

hints
private java.lang.String[] hints

Stores the list of all possible hints shown in the loading screen.

hintTime
private int hintTime

Stores the amount of time the current hint has been showing.

playerStateTime
private float playerStateTime

Holds the amount of time the player has been playing his current animation. Used to tell Spine
which time in the animation to play.

displayTime
private float displayTime

Stores the amount of time the loading screen has been displayed.

208

events
private com.badlogic.gdx.utils.Array<com.esotericsoftware.spine.Event>
events

Helper Array that's passed to the Animation.set() method when the player plays an animation.

Constructor Detail

MainMenuLoadingScreen
public MainMenuLoadingScreen(Survivor game)

Instantiates a new main menu loading screen.

Parameters:

game - the game instance used to create the screen

Method Detail

show
public void show()

Called when the screen becomes chosen as the screen for the game.

render
public void render(float deltaTime)

Called every game tick to update and render the game.

Specified by:

render in interface com.badlogic.gdx.Screen

Overrides:

render in class Screen

Parameters:

deltaTime - the execution time of the previous frame.

update

209

private void update(float deltaTime)

Updates the logic of the loading screen, positioning certain widgets and changing certain
elements.

Parameters:

deltaTime - the execution time of the previous frame.

drawGUI
private void drawGUI()

Draws the GUI for the Loading Screen

resize
public void resize(int width, int height)

Called when the screen resizes, or when the screen is created.

Specified by:

resize in interface com.badlogic.gdx.Screen

Overrides:

resize in class Screen

Parameters:

width - the width of the screen

height - the height of the screen

pause
public void pause()

Called when the user hides the application or quits the game.

resume
public void resume()

Called when the user re-opens the application after having left it.

210

II.3.1.28 GameSelectScreen

 The GameSelectScreen allows the user to choose to either load, continue, or create a

new profile. This screen was added according to user feedback.

(See next page for class diagram and details)

211

Figure 47: Visual representation of GameSelectScreen class

public class GameSelectScreen
extends Screen

Field Detail

212

BACKGROUND_X_OFFSET
private static final float BACKGROUND_X_OFFSET

Stores the x-offset of the background relative to the center of the stage.

BACKGROUND_Y_OFFSET
private static final float BACKGROUND_Y_OFFSET

Stores the y-offset of the background relative to the center of the stage.

TABLE_Y_OFFSET
private static final float TABLE_Y_OFFSET

Holds the amount that the table is offset in the y-axis.

BUTTON_X_OFFSET
private static final float BUTTON_X_OFFSET

Stores the horizontal offset between each of the three main buttons on the screen.

BUTTON_DISABLED_COLOR
private static final com.badlogic.gdx.graphics.Color
BUTTON_DISABLED_COLOR

Holds the color of the buttons when they are disabled.

BACK_BUTTON_X_OFFSET
public static final float BACK_BUTTON_X_OFFSET

Stores the x-offset used to anchor the back button to the bottom-right of the screen with a
certain padding.

BACK_BUTTON_Y_OFFSET
public static final float BACK_BUTTON_Y_OFFSET

Stores the y-offset used to anchor the back button to the bottom-right of the screen with a
certain padding.

stage

private com.badlogic.gdx.scenes.scene2d.Stage stage

213

Stores the stage used as a container for the UI widgets. It is essentially the camera that draws
the widgets.

inputListener
private GameSelectScreen.InputListener inputListener

InputListener which receives an event when the BACK button is pressed on Android devices.
Allows the user to switch back to the main menu.

inputMultiplexer
private com.badlogic.gdx.InputMultiplexer inputMultiplexer

Class allowing us to set multiple instance of InputListeners to receive input events.

table
private com.badlogic.gdx.scenes.scene2d.ui.Table table

Stores the table actor. This actor arranges the widgets at the center of the screen in a grid-like
fashion.

gameSelectBackground
private TiledImage gameSelectBackground

Holds the background for the GameSelectScreen, which is formed by a tiles of two images.

header
private com.badlogic.gdx.scenes.scene2d.ui.Label header

Stores the label displaying the header.

continueButton
private com.badlogic.gdx.scenes.scene2d.ui.ImageButton continueButton

Stores the button used to continue the game from the player's last profile.

newGameButton
private com.badlogic.gdx.scenes.scene2d.ui.ImageButton newGameButton

Holds the "New Game" button

214

loadButton
private com.badlogic.gdx.scenes.scene2d.ui.ImageButton loadButton

Stores the button used to load one of the player's saved profiles.

continueLabel
private com.badlogic.gdx.scenes.scene2d.ui.Label continueLabel

Stores the label below the "Continue" button used to indicate its name.

newGameLabel
private com.badlogic.gdx.scenes.scene2d.ui.Label newGameLabel

Stores the label below the "New Game" button used to indicate its name.

loadLabel
private com.badlogic.gdx.scenes.scene2d.ui.Label loadLabel

Stores the label below the "Load" button used to indicate its name.

backButton
private com.badlogic.gdx.scenes.scene2d.ui.Button backButton

Holds the "Back" button

WORLD_LIST_WIDTH
private static final float WORLD_LIST_WIDTH

Holds the width of the world selection list. That is, the width of the blue bar in pixels for the
target resolution (480x320).

Constructor Detail

GameSelectScreen
public GameSelectScreen(Survivor game)

Instantiates a new game select screen.

Parameters:

215

game - the Game instance used to manage the screen

Method Detail

show
public void show()

Called when the screen becomes chosen as the screen for the game.

newGame
private void newGame()

Creates a new profile, and runs the game using that profile.

continueGame
private void continueGame()

Continues the game from the last profile that the user saved.

render
public void render(float deltaTime)

Called every game tick to update and render the game.

Specified by:

render in interface com.badlogic.gdx.Screen

Overrides:

render in class Screen

Parameters:

deltaTime - the execution time of the previous frame.

resize
public void resize(int width, int height)

Called when the screen resizes, or when the screen is created.

Specified by:

216

resize in interface com.badlogic.gdx.Screen

Overrides:

resize in class Screen

Parameters:

width - the width of the screen

height - the height of the screen

disableUselessButtons
private void disableUselessButtons()

Disables the continueButton and the loadButton if the user has no saved profiles on his hard
drive.

resizeButtons
private void resizeButtons()

Resizes all of the buttons on the screen to ensure that their proportions are the same, no matter
the size of the screen.

fadeIn
public void fadeIn()

Plays a fade in animation when the user enters this screen.

dispose
public void dispose()

Frees up system resources related to the screen when the application quits.

Specified by:

dispose in interface com.badlogic.gdx.Screen

Overrides:

dispose in class Screen

pause

217

public void pause()

Called when the user hides the application or quits the game.

resume
public void resume()

Called when the user re-opens the application after having left it.

backPressed
public void backPressed()

Called when either the visual BACK button is pressed, or when the Android BACK button is
pressed. Move the user back to the main menu,

II.3.1.29 GameScreen

 The GameScreen is the window where the user will spend the most time in Free the Bob.

It controls all of the elements of the world, including input and rendering. First, it has a

gameState. This variable holds an enumeration constant which indicates the state of the game.

For instance, if the user is inside the backpack menu, the state will be set to

GameState.BACKPACK. The paused boolean, on the other hand, simply holds true if the game is

paused. The game will stop updating, in this case. Furthermore, the GameScreen holds an

instance to the World, which oversees all game logic. Next, this class has a worldRenderer. This

instance is used to render every graphical element in the world. For instance, it draws the player

and the terrain to the screen. Next, the GameScreen has references to an InputManager and a

GestureManager, which receive all input events pertinent to the world.

 In terms of GUI, the screen holds a hud variable. This instance variable holds the current

Hud instance which should be used to draw the GUI which overlays the world. For instance, if

the game needs to draw the Exploration HUD, the hud variable will hold an instance of

ExplorationHud. The next five member variables each hold an instance of a Hud subclass. The

screen switches between these heads-up displays in order to show the graphical user-interface

which corresponds to the current state of the game. Finally, the GameScreen holds a reference to

218

Figure 48 : GameScreen class diagram

219

a UiListener, an inner class which implements the HudListener interface. This listener is

registered to every Hud instance, and listens for any events or button presses that have occurred

inside a Hud. Depending on the event, the GameScreen can decide to delegate a method call to

the World, or even switch from one state to another.

 Next, the constructor of this screen accepts the Survivor instance used to create the

screen. It also accepts the Profile instance from which the World will be instantiated. It allows

the GameScreen to be aware of any save data pertinent to creating the world.

 Furthermore, the update(float) and render(float) methods update world and render

graphical elements respectively. They both accept the time elapsed between the previous and

current frame. Note that the setGameState(GameState) method is private, as only the

GameScreen should be allowed to update its state. Since it oversees all game logic, no other class

should be able to modify its state. No getter for the GameState was included as no class needs to

know about the game's state aside from the GameScreen.

 Finally, the pauseGame() and resumeGame() methods pause and resume the game,

respectively. The pauseInput() and resumeInput() methods are helper methods used to pause or

resume any input handling.

public class GameScreen
extends Screen

Field Detail

gameState
private GameScreen.GameState gameState

Stores the state of the game, used to determine how to update the world, and how to draw the
UI.

stateBeforePause
private GameScreen.GameState stateBeforePause

Stores the game's state before it was paused. Allows the game to resume to its previous game
state on resume.

220

paused
private boolean paused

Holds true if the game is paused. Prevents the world and the graphics from being updated.

profile
private Profile profile

Stores the profile used to create the world.

itemManager
private ItemManager itemManager

Holds the ItemManager instance. Its purpose is to give access to Item instances used in the
player's inventory, and sprites used inside menus.

world
private World world

Stores the world, which controls all game logic.

worldRenderer
private WorldRenderer worldRenderer

Stores the world renderer, which takes the objects in the world, and displays them.

inputManager
private InputManager inputManager

Manages all simple input of the game such as "touch ups" and calls method of the world's
GameObjects to match user input.

gestureManager
private GestureManager gestureManager

Manages all gestures input of the game such as "swipes" and calls method of the world's
GameObjects to match user input.

stage

private com.badlogic.gdx.scenes.scene2d.Stage stage

221

Stores the stage instance where all hud elements will be placed and drawn.

inputMultiplexer
private com.badlogic.gdx.InputMultiplexer inputMultiplexer

Class allowing us to set multiple instance of InputListeners to receive input events.

hud
private Hud hud

Stores the currently active Hud which draws the UI to the screen.

explorationHud
private ExplorationHud explorationHud

Stores the ExplorationHud instance which draws the UI when the user is in exploration mode.

combatHud
private CombatHud combatHud

Holds the CombatHud instance which draws the UI when the user is in combat mode.

backpackHud
private BackpackHud backpackHud

Stores the BackpackHud which displays the Backpack inventory screen.

survivalGuideHud
private SurvivalGuideHud survivalGuideHud

Stores the SurvivalGuideHud which displays the survival guide menu.

craftingHud
private CraftingHud craftingHud

Holds the CraftingHud instance which displays the crafting menu.

pauseMenuHud

private PauseMenuHud pauseMenuHud

222

Holds the HUD which displays the pause menu.

gameOverHud
private GameOverHud gameOverHud

Stores the HUD which displays the "Game Over" text when the player is dead.

uiListener
private GameScreen.UiListener uiListener

Stores the UiListener which receives all events related to the UI or the HUD. Used to react
appropriately to button presses.

inputListener
private GameScreen.InputGestureListener inputListener

The listener which receives events fired from the InputManager class. For instance, the
GameScreen is informed through this listener when the BACK key is pressed.

sfxListener
private GameScreen.SfxListener sfxListener

Holds the listener which receives events whenever a particular sound needs to be played.

Constructor Detail

GameScreen
public GameScreen(Survivor game, Profile profile)

Creates a game screen. The profile used to create the screen must be specified to load the
user's previous save information and update it.

Parameters:

game - the Game instance used to manage the screen

profile - the profile used to create the game and the world

Method Detail

render

223

public void render(float deltaTime)

Called every frame to update game logic and render all game entities.

Specified by:

render in interface com.badlogic.gdx.Screen

Overrides:

render in class Screen

Parameters:

deltaTime - the execution time of the previous frame

update
private void update(float deltaTime)

Updates the world and the world camera.

Parameters:

deltaTime - the execution time of the previous frame

draw
private void draw(float deltaTime)

Draws the UI, along with the world and its contained GameObjects.

Parameters:

deltaTime - the execution time of the previous frame

backPressed
private void backPressed()

Delegates when either the hardware back button is pressed, or the back button is pressed from
the HUD.

setGameState

private void setGameState(GameScreen.GameState state)

224

Sets the GameState. Updates the hudRenderer to draw the correct HUD.

pauseGame
public void pauseGame(GameScreen.GameState newState)

Pauses the game whilst running. Called when transitioning to a menu. Accepts the game state
the user is switching to.

Parameters:

newState - the new state to switch to when pausing

resumeGame
public void resumeGame()

Resumes the game to its previous state before being paused.

pauseForAnimation
private void pauseForAnimation()

Pauses the game when an animation plays. Allows the animation to finish without the player
pressing anything.

resumeForAnimation
private void resumeForAnimation()

Called when an screen overlay animation finishes playing. Resumes the game so that the user
can continue playing.

pauseHud
private void pauseHud()

Pauses the Hud so that the user can't press any button on the Hud.

resumeHud
private void resumeHud()

Resumes the Hud so that the user can again press a button on the Hud.

pauseInput

public void pauseInput()

225

Pauses the game by pausing all of the input handling.

resumeInput
public void resumeInput()

Resumes the game by allowing the input managers to delegate method calls to the world.

goToMainMenu
private void goToMainMenu()

Transitions to the MainMenuScreen.

show
public void show()

Called when the screen becomes chosen as the screen for the game.

See Also:

Screen.show()

pause
public void pause()

Called when the application is left on Android or when the game is exitted. Saves player
information to the hard drive in case of application quit.

resume
public void resume()

Called when the user re-opens the application after having left it.

See Also:

Screen.resume()

dispose
public void dispose()

Called when the application closes, or when the user leaves the screen.

Specified by:

226

dispose in interface com.badlogic.gdx.Screen

Overrides:

dispose in class Screen

resize
public void resize(int width, int height)

Called when the screen resizes, or when the screen is created.

Specified by:

resize in interface com.badlogic.gdx.Screen

Overrides:

resize in class Screen

Parameters:

width - the width of the screen

height - the height of the screen

(See next page for Hud class)

227

II.3.1.30 Hud

Figure 49 : Hud class diagram

 The Hud abstract class is used to display a heads-up display while the player is inside the

game world. It allows to overlay the world with a UI widgets which can be clicked to change the

world's game logic appropriately.

 The first member variable in this class is the very familiar stage. Much like in the Screen

subclasses, it acts as a container for widgets, which it then draws to the screen. Then, the Hud

class holds the assets singleton which allows all heads-up displays to have access to the visual

assets needed to render the UI widgets.

 The Hud also has a reference to the World instance, which controls game logic.

Subclasses can call the world's methods according to certain button presses. For instance, if the

left arrow button is pressed in the ExplorationHud, the World.walk(Player, Direction) method is

called.

 Most importantly, the Hud holds a HudListener instance. The HudListener registered to

this class will receive methods pertinent to button presses in the HUD. In this program, the

GameScreen.uiListener instance is registered to this class. Thus, the GameScreen receives all

HUD events and acts correspondingly.

 The only constructor in the Hud class accepts the Stage used to draw the HUD's widgets,

and the World to which it can call methods.

228

 The draw(float) method, on the other hand, accepts a deltaTime parameter, and renders

all of the 2d widgets to the screen with the use of the Stage instance. Finally, the abstract

reset(float, float) method is called whenever the screen is resized. Its purpose is to resize the

stage used by the class. It accepts the width and height of the GUI in pixels in order to re-scale

widgets accordingly.

public abstract class Hud
extends java.lang.Object

Field Detail

stage
protected com.badlogic.gdx.scenes.scene2d.Stage stage

Stores the stage where 2d widgets will be placed and drawn.

assets
protected Assets assets

Stores the Assets singleton of the game used to fetch assets to draw the HUD.

world
protected World world

Stores the world that any Hud elements can call methods from in case of a button press.

hudListener
protected HudListener hudListener

Stores the Listener where Hud events are delegated.

Constructor Detail

Hud
public Hud(com.badlogic.gdx.scenes.scene2d.Stage stage, World world)

Accepts the stage where 2d widgets will be contained and drawn, and the world, where input
events will be dispatched.

229

Method Detail

addHudListener
public void addHudListener(HudListener hudListener)

Registers the listener where Hud events will be delegated.

draw
public void draw(float deltaTime)

Draws the Hud to the screen using the stage.

Parameters:

deltaTime - the amount of time elapsed since the last render call

reset
public abstract void reset(float guiWidth, float guiHeight)

Resets the widgets on the stage. Called when screen is resized. Given parameters are the size
that the Hud should occupy in pixels.

Parameters:

guiWidth - The width in pixels that the gui should occupy.

guiHeight - the height in pixels that the gui should occupy.

(See next page for CombatHud & ExplorationHud)

230

II.3.1.31 ExplorationHud & CombatHud

Figure 50 : ExplorationHud and CombatHud class diagrams

 These HUDs are displayed whenever the player is either exploring the world or fighting a

zombie. Their appearance is shown in section II.3 GUI. The variable of these classes are simply

the widgets used to display the HUD.

 The constructors of these two classes accept the Stage instance used to draw its widgets,

and the World to which it will delegate method calls. For instance, when the player presses the

rightArrowButton, the ExplorationHud will call the World.walk (Player, Direction) method.

231

public class CombatHud
extends Hud

Field Detail

JUMP_BUTTON_X_OFFSET
public static final float JUMP_BUTTON_X_OFFSET

Stores the x-offset of the jump button. Used to anchor the button relative to the bottom-left of the
screen.

JUMP_BUTTON_Y_OFFSET
public static final float JUMP_BUTTON_Y_OFFSET

Stores the y-offset of the jump button. Used to anchor the button relative to the bottom-left of the
screen.

MELEE_BUTTON_X_OFFSET
public static final float MELEE_BUTTON_X_OFFSET

Stores the x-offset of the melee button. Used to anchor the button relative to the bottom-right of
the screen.

MELEE_BUTTON_Y_OFFSET
public static final float MELEE_BUTTON_Y_OFFSET

Stores the y-offset of the melee button. Used to anchor the button relative to the bottom-right of
the screen.

FIRE_BUTTON_X_OFFSET
public static final float FIRE_BUTTON_X_OFFSET

Stores the x-offset of the fire button. Used to anchor the button relative to the bottom-right of the
screen.

FIRE_BUTTON_Y_OFFSET
public static final float FIRE_BUTTON_Y_OFFSET

Stores the y-offset of the fire button. Used to anchor the button relative to the bottom-right of the
screen.

232

JUMP_BUTTON_COLOR
public static final com.badlogic.gdx.graphics.Color JUMP_BUTTON_COLOR

Stores the color of the jump button.

MELEE_BUTTON_COLOR
public static final com.badlogic.gdx.graphics.Color MELEE_BUTTON_COLOR

Stores the color of the melee button.

FIRE_BUTTON_COLOR
public static final com.badlogic.gdx.graphics.Color FIRE_BUTTON_COLOR

Stores the color of the fire button.

jumpButton
private com.badlogic.gdx.scenes.scene2d.ui.ImageButton jumpButton

Stores the button used to make the player jump.

meleeButton
private com.badlogic.gdx.scenes.scene2d.ui.ImageButton meleeButton

Holds the button used to make the player melee with his weapon.

fireButton
private com.badlogic.gdx.scenes.scene2d.ui.ImageButton fireButton

Holds the button used to make the player fire his ranged weapon.

PAUSE_BUTTON_X_OFFSET
public static final float PAUSE_BUTTON_X_OFFSET

Stores the x-offset of the pause button. Used to anchor the button to the top-right corner of the
screen with a given offset.

PAUSE_BUTTON_Y_OFFSET

public static final float PAUSE_BUTTON_Y_OFFSET

233

Stores the y-offset of the pause button. Used to anchor the button to the top-right corner of the
screen with a given offset.

PAUSE_HIT_BOX_SCALE
public static final float PAUSE_HIT_BOX_SCALE

Holds the scale of the pause button's hit box. Allows for easier clicking.

pauseButton
private com.badlogic.gdx.scenes.scene2d.ui.Button pauseButton

Stores the Pause Button, used to pause the game.

buttonListener
private CombatHud.ButtonListener buttonListener

Stores the listener used to listen for events from the arrow buttons.

buttonTouchListener
private CombatHud.ButtonTouchListener buttonTouchListener

Holds the ButtonTouchListener, used to recognize the button up and down events coming from
the fire button.

Constructor Detail

CombatHud
public CombatHud(com.badlogic.gdx.scenes.scene2d.Stage stage,
 World world)

Accepts the stage where 2d widgets will be drawn and placed, and the world, which will receive
information about button presses.

Parameters:

stage - the stage where the HUD widgets are placed

world - the world, whose method are called whenever the HUD widgets need to interact
with the world

Method Detail

234

draw
public void draw(float deltaTime)

Description copied from class: Hud

Draws the Hud to the screen using the stage.

Overrides:

draw in class Hud

Parameters:

deltaTime - the amount of time elapsed since the last render call

See Also:

Hud.draw(float)

reset
public void reset(float guiWidth, float guiHeight)

Called when the stage must be reset to draw the widgets contained in this class. Used when the
stage needs to be re-purposed. Also called when the screen is resized to re-place the widgets.

Specified by:

reset in class Hud

Parameters:

guiWidth - The width in pixels that the gui should occupy.

guiHeight - the height in pixels that the gui should occupy.

disableUselessButtons
private void disableUselessButtons()

Disable any buttons which the user cannot press, such as the meleeButton, if the user has no
melee weapon equipped.

resizeButtons
private void resizeButtons()

235

Resizes all of the buttons that need resizing. Ensures that the buttons' contents are all well
scaled with no deformities.

scaleHitBox
private void scaleHitBox(
 com.badlogic.gdx.scenes.scene2d.Actor actor,
 float scale)

Scales the bounds of the actor by the given amount. Allows to re-scale the bounding boxes of a
button. Note that the re-scaled bounds are centered on the actor.

Parameters:

actor - the actor whose hit box will be scaled

scale - the multiplier by which to scale the actor's hit box

public class ExplorationHud

extends Hud

Field Detail

ARROW_BUTTON_X_OFFSET
public static final float ARROW_BUTTON_X_OFFSET

Stores the x-offset of both arrow buttons. Used to anchor the buttons to the corners of the
screen.

ARROW_BUTTON_Y_OFFSET
public static final float ARROW_BUTTON_Y_OFFSET

Stores the y-offset of both arrow buttons. Used to anchor the buttons to the corners of the
screen.

ARROW_BUTTON_COLOR
public static final com.badlogic.gdx.graphics.Color ARROW_BUTTON_COLOR

Stores the color of the arrow buttons.

leftArrowButton

236

private com.badlogic.gdx.scenes.scene2d.ui.ImageButton leftArrowButton

Stores the left and right arrow buttons to make the player move left and right.

rightArrowButton
private com.badlogic.gdx.scenes.scene2d.ui.ImageButton
rightArrowButton

Stores the left and right arrow buttons to make the player move left and right.

BACKPACK_BUTTON_X_OFFSET
public static final float BACKPACK_BUTTON_X_OFFSET

Stores the x-offset of the backpack button. Used to anchor the button to the corner of the screen
with a given offset.

BACKPACK_BUTTON_Y_OFFSET
public static final float BACKPACK_BUTTON_Y_OFFSET

Stores the y-offset of the backpack button. Used to anchor the button to the corner of the screen
with a given offset.

BACKPACK_HIT_BOX_SCALE
public static final float BACKPACK_HIT_BOX_SCALE

Holds the scale of the backpack button's hit box. Allows for easier clicking.

backpackButton
private com.badlogic.gdx.scenes.scene2d.ui.Button backpackButton

Stores the Backpack button.

PAUSE_BUTTON_X_OFFSET
public static final float PAUSE_BUTTON_X_OFFSET

Stores the x-offset of the pause button. Used to anchor the button to the top-right corner of the
screen with a given offset.

PAUSE_BUTTON_Y_OFFSET

public static final float PAUSE_BUTTON_Y_OFFSET

237

Stores the y-offset of the pause button. Used to anchor the button to the top-right corner of the
screen with a given offset.

PAUSE_HIT_BOX_SCALE
public static final float PAUSE_HIT_BOX_SCALE

Holds the scale of the pause button's hit box. Allows for easier clicking.

pauseButton
private com.badlogic.gdx.scenes.scene2d.ui.Button pauseButton

Stores the Pause Button, used to pause the game.

buttonListener
private ExplorationHud.ButtonListener buttonListener

Stores the listener used to listen for events from the arrow buttons.

leftArrowButtonDown
private boolean leftArrowButtonDown

Stores the buttons displaying the left arrow to move the player.

rightArrowButtonDown
private boolean rightArrowButtonDown

Stores the buttons displaying the right arrow to move the player.

Constructor Detail

ExplorationHud
public ExplorationHud(com.badlogic.gdx.scenes.scene2d.Stage stage,
 World world)

Accepts the stage where 2d widgets will be drawn and placed, and the world, which will receive
information about button presses.

Parameters:

stage - the stage where the HUD widgets are drawn

238

world - the world, whose methods are called when the HUD should change world data

Method Detail

draw
public void draw(float deltaTime)

Description copied from class: Hud

Draws the Hud to the screen using the stage.

Overrides:

draw in class Hud

Parameters:

deltaTime - the amount of time elapsed since the last render call

See Also:

Hud.draw(float)

reset
public void reset(float guiWidth, float guiHeight)

Called when the stage must be reset to draw the widgets contained in this class. Used when the
stage needs to be re-purposed. Also called when the screen is resized to re-place the widgets.

Specified by:

reset in class Hud

Parameters:

guiWidth - The width in pixels that the gui should occupy.

guiHeight - the height in pixels that the gui should occupy.

scaleHitBox
private void scaleHitBox(com.badlogic.gdx.scenes.scene2d.Actor actor,
 float scale)

239

Scales the bounds of the actor by the given amount. Allows to re-scale the bounding boxes of a
button. Note that the re-scaled bounds are centered on the actor.

Parameters:

actor - the actor whose hit box will be scaled

scale - the multiplier by which to scale the actor's hit box

II.3.1.32 BackpackHud & CraftingHud

 The BackpackHud whose UML diagram is shown in the figure in the next page is

displayed when the player presses the backpack button in the Exploration HUD. From the

backpack HUD, the player can access the crafting HUD by pressing on the crafting button. The

appearance of the BackpackHud is shown in the Backpack Menu entry in section II.2 GUI. On

the other hand, the CraftingHud's appearance can be reffered to inside the Crafting Menu entry

in the same section.

 In terms of member variables, both classes first hold the backpackBg Image, which is

used to display the background behind the widgets. Next, both classes, have a header Label,

which shows the title of the menu at the top of the screen. Next, the BackpackHud holds the

survivalGuideButton, which transitions to the Survival Guide Menu, and the craftingButton,

which transitions to the Crafting Menu when pressed. Note that the two buttons are proceeded by

two labels. The first, survivalGuideLabel, displays the text under the survivalGuideButton. The

second, craftingLabel, displays the text under the craftingButton. The buttons and their labels

were separated so that they could be positioned more easily. Next, both classes have the

backButton, which is used to switch to the previous HUD where the user was located before

switching to the current HUD. Then, both classes also have a Table instance. This table variable

allows every button and label to be arranged neatly inside the HUD. It acts essentially like a

GridLayout in Java's Swing framework.

 The CraftingHud contains slightly more data fields. For instance, it holds a reference to

the player's inventory. This allows the CraftingHud to extract the information for every item in

the player's inventory.

240

Figure 51 : BackPackHud and CraftingHud class diagrams

 The constructors of these two classes accept the Stage instance used to draw its widgets,

and the World to which it will delegate method calls.

241

public class BackpackHud
extends Hud

Field Detail

BUTTON_SPACING
public static final float BUTTON_SPACING

Stores the spacing between the buttons in the middle of the backpack.

TABLE_Y_OFFSET
public static final float TABLE_Y_OFFSET

Stores the y position of the table nudge the table up, so that the header is at the right position
on the backpack.

See Also:

HEADER_Y_OFFSET
public static final float HEADER_Y_OFFSET

Stores the offset between the bottom of the "Backpack" header and the top of the buttons. Adds
spacing between the header and the buttons.

See Also:

BACK_BUTTON_X_OFFSET
public static final float BACK_BUTTON_X_OFFSET

Stores the x-offset used to anchor the back button to the bottom-right of the screen with a
certain padding.

See Also:

BACK_BUTTON_Y_OFFSET
public static final float BACK_BUTTON_Y_OFFSET

Stores the y-offset used to anchor the back button to the bottom-right of the screen with a
certain padding.

backpackBg

private com.badlogic.gdx.scenes.scene2d.ui.Image backpackBg

242

Stores the image of the backpack background.

backpackHeader
private com.badlogic.gdx.scenes.scene2d.ui.Label backpackHeader

Stores the header displaying "Backpack" on top of the Hud.

survivalGuideButton
private com.badlogic.gdx.scenes.scene2d.ui.Button survivalGuideButton

Stores the buttons displayed on the Backpack Hud, including the SurvivalGuide, and Crafting
buttons.

craftingButton

private com.badlogic.gdx.scenes.scene2d.ui.Button craftingButton

survivalGuideLabel
private com.badlogic.gdx.scenes.scene2d.ui.Label survivalGuideLabel

Stores the labels displaying the names of each main button.

craftingLabel
private com.badlogic.gdx.scenes.scene2d.ui.Label craftingLabel

backButton
private com.badlogic.gdx.scenes.scene2d.ui.Button backButton

Stores the back button, used to exit out of the backpack hud.

table
private com.badlogic.gdx.scenes.scene2d.ui.Table table

Stores the Table instance where buttons are organized in a grid-like fashion.

Constructor Detail

BackpackHud
public BackpackHud(com.badlogic.gdx.scenes.scene2d.Stage stage,
 World world)

243

Accepts the Stage instance where widgets are drawn, and the world, used to manipulate the
world according to button presses.

Parameters:

stage - the stage where the HUD widgets are placed

world - the world, whose method are called whenever the HUD widgets need to interact
with the world

Method Detail

draw
public void draw(float deltaTime)

Description copied from class: Hud

Draws the Hud to the screen using the stage.

Overrides:

draw in class Hud

Parameters:

deltaTime - the amount of time elapsed since the last render call

reset
public void reset(float guiWidth,
 float guiHeight)

Called whenever the current Hud of the game switches to the backpack Hud. Used to reset the
stage to hold the widgets of the Backpack Hud. Also called when the screen is resized. Thus,
any widgets can be repositioned or rescaled accordingly.

Specified by:

reset in class Hud

Parameters:

guiWidth - The width in pixels that the gui should occupy.

guiHeight - the height in pixels that the gui should occupy.

244

 The CraftingHud allows the user to craft resources using the items in his inventory. It

contains a CraftingTable and an InventoryList, which control most of its functionalities.

public class CraftingHud
extends Hud

Field Detail

INVENTORY_LIST_HEIGHT
public static final float INVENTORY_LIST_HEIGHT

Holds the height of the inventory list holding all of the item buttons.

INVENTORY_LIST_X_OFFSET
public static final float INVENTORY_LIST_X_OFFSET

Holds the offset used to anchor the inventory list to the left of the backpack background. Offsets
the list relative to the center of the screen.

INVENTORY_LIST_Y_OFFSET
public static final float INVENTORY_LIST_Y_OFFSET

Holds the offset used to anchor the inventory list to the left of the backpack background. Offsets
the list relative to the center of the screen.

CRAFTING_TABLE_X_OFFSET
public static final float CRAFTING_TABLE_X_OFFSET

Holds the x-offset used to anchor the crafting table to the left of the backpack background.
Offsets the table relative to the center of the screen.

CRAFTING_TABLE_Y_OFFSET
public static final float CRAFTING_TABLE_Y_OFFSET

Holds the y-offset used to anchor the crafting table to the left of the backpack background.
Offsets the table relative to the center of the screen.

CRAFT_BUTTON_X_OFFSET
public static final float CRAFT_BUTTON_X_OFFSET

245

Stores the x-offset used to anchor the craftButton to the bottom-right of the backpack
background. Offsets the button relative to the bottom-right of the background

CRAFT_BUTTON_Y_OFFSET
public static final float CRAFT_BUTTON_Y_OFFSET

Stores the offset used to anchor the craftButton to the bottom-right of the backpack background.
Offsets the button relative to the bottom-right of the background

HEADER_X_OFFSET
public static final float HEADER_X_OFFSET

Holds the x-offset used to anchor the header to the top-center of the screen. Offsets the header
relative to the center of the screen.

HEADER_Y_OFFSET
public static final float HEADER_Y_OFFSET

Holds the y-offset used to anchor the header to the top-center of the screen. Offsets the header
relative to the center of the screen.

BACK_BUTTON_X_OFFSET
public static final float BACK_BUTTON_X_OFFSET

Stores the offset used to anchor the back button to the bottom-right of the backpack background
with a certain padding.

BACK_BUTTON_Y_OFFSET
public static final float BACK_BUTTON_Y_OFFSET

Stores the offset used to anchor the back button to the bottom-right of the backpack background
with a certain padding.

craftingManager
private CraftingManager craftingManager

Holds the CraftingManager singleton which dictates whether or not an item combination forms a
certain item.

craftingItems

246

private com.badlogic.gdx.utils.Array<CraftingManager.Item>
craftingItems

Holds an array of each item and their quantity inside the crafting table. Used to dictate if the
item combination forms another item.

craftedItem
private CraftingManager.Item craftedItem

Stores the item crafted from the items currently inside the crafting table.

inventory
private Inventory inventory

Stores the player's inventory in order to populate the items in the inventory list.

itemManager
private ItemManager itemManager

Holds the ItemManager instance. Its purpose is to give access to Item instances, which give an
item's information and sprite.

backpackBg
private com.badlogic.gdx.scenes.scene2d.ui.Image backpackBg

Stores the image of the backpack background.

craftingHeader
private com.badlogic.gdx.scenes.scene2d.ui.Label craftingHeader

Stores the header displaying "Crafting" on top of the Hud.

inventoryList
private InventoryList inventoryList

Stores the list containing all the items in the player's inventory.

craftingTable

private CraftingTable craftingTable

247

Holds the crafting table which holds a grid of the items being crafted.

confirmDialog
private ConfirmDialog confirmDialog

Holds the ConfirmDialog which prompts the user when he wants to craft an item.

craftButton
private com.badlogic.gdx.scenes.scene2d.ui.Button craftButton

Stores the button displaying "Craft". When pressed, the items in the crafting table combine to
create a new item.

backButton
private com.badlogic.gdx.scenes.scene2d.ui.Button backButton

Stores the back button, used to exit out of the crafting menu.

Constructor Detail

CraftingHud
public CraftingHud(com.badlogic.gdx.scenes.scene2d.Stage stage,
 World world, Inventory inventory,
 ItemManager itemManager)

Accepts the Stage instance where widgets are drawn, and the world, used to manipulate the
world according to button presses. The ItemManager is accepted in order to fetch internally-
pooled Item instances in order to draw the items in the player's inventory.

Parameters

stage - the stage where the HUD widgets are drawn

world - the world, whose methods are called when the HUD should change world data

inventory - the inventory, used to populate the list of items in the left-hand list

itemManager - the item manager, used to accesses Item instances and sprites, in
order to display certain items in the HUD

Method Detail

transferToInventory

248

private void transferToInventory(java.lang.Class itemClass,
 int quantity)

Transfers the given quantity of the item from the crafting table to the inventory list.

Parameters:

itemClass - the item type to transfer to the inventory list

quantity - the quantity of that item to place in the inventory list

transferToCraftingTable
private void transferToCraftingTable(java.lang.Class itemClass,
 int quantity)

Transfers the given quantity of the given item from the inventory list to the crafting table.

Parameters:

itemClass - the item type to transfer to the crafting table

quantity - the quantity of that item to place in the crafting table

promptCraft
private void promptCraft()

Asks the user if he wants to craft the item in the crafting table. Opens up the confirm dialog to
ensure of the player's choice.

craftItem
private void craftItem()

Crafts the item formed by the items in the crafting table and adds it to the inventory, deleting all
the other items that were used to form the item.

updateCraftedItem
private void updateCraftedItem()

Updates the item shown in the cell below the item grid. Computes if any items can be crafted
using the items in the crafting table. If so, the crafting box below the item grid is updated with
the appropriate picture.

addToItemList

249

private void addToItemList(java.lang.Class itemClass,
 int quantity)

Adds the given item to the array of items in the crafting table. Allows class to determine if items
can form another item.

Parameters:

itemClass - the item type to add to the list of items that the user has dragged to the
crafting table

quantity - the quantity of that item added to the crafting table

reset
public void reset(float guiWidth,
 float guiHeight)

Called whenever the current Hud of the game switches to the backpack Hud. Used to reset the
stage to hold the widgets of the Backpack Hud. Also called when the screen is resized. Thus,
any widgets can be repositioned or rescaled accordingly.

Specified by:

reset in class Hud

Parameters:

guiWidth - The width in pixels that the gui should occupy.

guiHeight - the height in pixels that the gui should occupy.

emptyCraftingTable
public void emptyCraftingTable(boolean transferToInventory)

Removes the items from the crafting table. If the argument is true, the items are put back into
the player's inventory.

onBack
public void onBack()

Called when the back button is pressed, or when the game exits. Prompts the gameScreen to
return to the backpack menu, and removes the elements in the crafting table back into the
inventory.

250

II.3.1.33 SurvivalGuideHud & PauseMenuHud

 The SurvivalGuideHud displays the Survival Guide Menu, and the PauseMenuHud

displays the Pause Menu, which are both detailed in section II.3 GUI.

 First, as seen in the class diagram on the next page, both classes have a table instance.

Much like other Hud subclasses, this table is used to arrange the UI widgets in a grid-like

fashion. Then, the SurvivalGuideHud has the survivalGuideBg, an image which shows the

background of the backpack. Next, both classes have a header label, used to display the name of

the HUD at the top of the screen.

 The PauseMenuHud is more straight-forward. In terms of extra widgets, it simply has a

resumeButton, used to resume the game, and a mainMenuButton, used to return to the main

menu.

 The constructors of these two classes accept the Stage instance used to draw its widgets,

and the World to which it will delegate method calls.

(See next page for class diagrams)

251

Figure 52 : SurvivalGuideHud and PauseMenuHud class diagrams

public class SurvivalGuideHud
extends Hud

Field Detail

LIST_Y_OFFSET
public static final float LIST_Y_OFFSET

Stores the amount the list is offset up, relative to the center of the screen. This is the top-most y-
position of the text, where 0 will place it at the center of the screen.

252

LIST_X_OFFSET
public static final float LIST_X_OFFSET

Holds the amount the list is nudged to the left. This allows the entries in the list to look left-
aligned.

SCROLL_PANE_WIDTH
public static final float SCROLL_PANE_WIDTH

Holds the width of the scroll pane where entries are displayed in the survival guide.

SCROLL_PANE_HEIGHT
public static final float SCROLL_PANE_HEIGHT

Holds the height of the scroll pane where entries are displayed in the survival guide.

HEADER_X_OFFSET
public static final float HEADER_X_OFFSET

Stores the x-offset of the "Guide" header relative to the center of the screen.

HEADER_Y_OFFSET
public static final float HEADER_Y_OFFSET

Stores the offset between the bottom of the "Guide" header and the top of the listof entries.
Adds spacing between the header and the buttons.

BACK_BUTTON_X_OFFSET
public static final float BACK_BUTTON_X_OFFSET

Stores the x-offset used to anchor the back button to the bottom-right of the screen with a
certain padding.

BACK_BUTTON_Y_OFFSET
public static final float BACK_BUTTON_Y_OFFSET

Stores the y-offset used to anchor the back button to the bottom-right of the screen with a
certain padding.

survivalGuideBg

253

private com.badlogic.gdx.scenes.scene2d.ui.Image survivalGuideBg

Stores the image of the survival guide's background.

entryButtons
private com.badlogic.gdx.utils.Array<com.badlogic.gdx.scenes.scene2d.u
i.TextButton> entryButtons

Stores the list of buttons which the user can press to access an entry in the survival guide.

entryButtonTable
private com.badlogic.gdx.scenes.scene2d.ui.Table entryButtonTable

Stores a table containing all of the entry buttons, arranged in a vertical list. The user can scroll
through it in a scroll pane and select an entry.

buttonListener
private SurvivalGuideHud.ButtonListener buttonListener

Holds the Listener which registers any button clicks. If an entry button is pressed, the correct
description for that pressed entry is shown.

entryLabel
private com.badlogic.gdx.scenes.scene2d.ui.Label entryLabel

Holds the label displaying the description for the entry the user clicked.

scrollPane
private com.badlogic.gdx.scenes.scene2d.ui.ScrollPane scrollPane

Stores the ScrollPane which allows the items in the survival guide to be scollable.

scrollPaneTable
private com.badlogic.gdx.scenes.scene2d.ui.Table scrollPaneTable

Holds the table where the scroll pane is contained. This is the high-level container for the list.

displayingDescription

private boolean displayingDescription

254

True if the description for an entry is currently being shown. On back, revert to the entry name
list.

entryNames
private final java.lang.String[] entryNames

Holds the list of entry names that the user can choose from the list.

entries
private final java.lang.String[] entries

Holds the description of every entry in the survival guide.

backButton
private com.badlogic.gdx.scenes.scene2d.ui.Button backButton

Stores the back button, used to exit out of the backpack hud.

table
private com.badlogic.gdx.scenes.scene2d.ui.Table table

Stores the Table instance where buttons are organized in a grid-like fashion.

Constructor Detail

SurvivalGuideHud
public SurvivalGuideHud(com.badlogic.gdx.scenes.scene2d.Stage stage,
 World world)

Accepts the stage where widgets are placed. The passed world is unused for this HUD.

Parameters:

stage - the stage where the HUD widgets are drawn

world - the world, whose methods are called when the HUD should change world data

Method Detail

createButtonTable
private void createButtonTable()

255

Called upon instantiation to create the table which holds buttons. The user can press these
buttons to access entries in the survival guide.

draw
public void draw(float deltaTime)

Description copied from class: Hud

Draws the Hud to the screen using the stage.

Overrides:

draw in class Hud

Parameters:

deltaTime - the amount of time elapsed since the last render call

See Also:

Hud.draw(float)

showEntryList
private void showEntryList()

Displays the list consisting of entry names.

showEntryDescription
private void showEntryDescription(int index)

Displays the description for the entry with the given index in the entryNames:String[] array.

Parameters:

index - the index of the entryNames:String[] array, which determines the string which
will be displayed in the survival guide

reset
public void reset(float guiWidth,
 float guiHeight)

Called either when this pause menu is supposed to be displayed, or when the screen is resized.
Parameters indicate the size that the HUD should occupy.

256

Specified by:

reset in class Hud

Parameters:

guiWidth - The width in pixels that the gui should occupy.

guiHeight - the height in pixels that the gui should occupy.

offsetTablePosition
private void offsetTablePosition()

Offsets the position of the table so that the header is at the right position

backPressed
public boolean backPressed()

Called by the GameScreen when the BACK key is pressed. If the survival guide is showing the
description to an entry, the guide reverts back to the entry list.

Returns:

Returns true if the survival guide was displaying the list of entries. If so, upon pressing
the back button, the GameScreen is told that the user should be reverted back to the
Backpack HUD.

public class PauseMenuHud
extends Hud

Field Detail

table
com.badlogic.gdx.scenes.scene2d.ui.Table table

Holds the table used to arrange the buttons in a grid-like fashion.

OVERLAY_COLOR
public static final com.badlogic.gdx.graphics.Color OVERLAY_COLOR

Holds the color which overlays the screen below the pause menu.

257

BUTTON_SPACING
public static final float BUTTON_SPACING

Stores the spacing between the buttons displayed in a list.

TABLE_OFFSET
public static final float TABLE_OFFSET

Stores the amount the table is offset upwards so that the "Paused" label is shown higher up the
screen.

headerLabel
private com.badlogic.gdx.scenes.scene2d.ui.Label headerLabel

Holds the header for the pause menu.

resumeButton
private com.badlogic.gdx.scenes.scene2d.ui.TextButton resumeButton

Stores the resume button displayed on the pause menu.

saveButton
private com.badlogic.gdx.scenes.scene2d.ui.TextButton saveButton

Stores the resume button displayed on the pause menu.

mainMenuButton
private com.badlogic.gdx.scenes.scene2d.ui.TextButton mainMenuButton

Stores the quit button displayed on the pause menu.

saveDialog
private ConfirmDialog saveDialog

Holds the ConfirmDialog which prompts the user and makes sure he wants to save his profile.

quitDialog

private ConfirmDialog quitDialog

258

Holds the ConfirmDialog which informs the user that his progress will be lost if he quits the
game.

buttonListener
private PauseMenuHud.ButtonListener buttonListener

Holds the ButtonListener which receives events when one of the pause menu's buttons are
pressed.

Constructor Detail

PauseMenuHud
public PauseMenuHud(com.badlogic.gdx.scenes.scene2d.Stage stage,
 World world)

Accepts the stage where widgets are placed. The passed world is unused for this HUD.

Parameters:

stage - the stage where the HUD widgets are drawn

world - the world, whose methods are called when the HUD should change world data

Method Detail

draw
public void draw(float deltaTime)

Description copied from class: Hud

Draws the Hud to the screen using the stage.

Overrides:

draw in class Hud

Parameters:

deltaTime - the amount of time elapsed since the last render call

See Also:

Hud.draw(float)

259

reset
public void reset(float guiWidth,
 float guiHeight)

Called either when this pause menu is supposed to be displayed, or when the screen is resized.
Parameters indicate the size that the HUD should occupy.

Specified by:

reset in class Hud

Parameters:

guiWidth - The width in pixels that the gui should occupy.

guiHeight - the height in pixels that the gui should occupy.

(See next page for CraftingTable class)

260

II.3.1.34 CraftingTable

Figure 53: CraftingTable class diagram

 The CraftingTable displays a table with six item slots and one crafted item slot. This is

the class the CraftingHud uses to show the grid of six items to the right of the screen.

public class CraftingTable
extends java.lang.Object

Field Detail

261

NUM_COLUMNS
private static final int NUM_COLUMNS

Stores the amount of columns of ItemCells in the table.

NUM_ITEMS
private static final int NUM_ITEMS

Holds the number of items that can be placed inside the crafting table.

BUTTON_WIDTH
private static final float BUTTON_WIDTH

Stores the width of each item button. Note that this is the size of the ItemCells' backgrounds, not
of the item's image itself.

BUTTON_HEIGHT
private static final float BUTTON_HEIGHT

Stores the height of each item button. Note that this is the size of the ItemCells' backgrounds,
not of the item's image itself.

BUTTON_PAD_RIGHT
private static final float BUTTON_PAD_RIGHT

Holds the horizontal distance between each item button.

BUTTON_PAD_BOTTOM
private static final float BUTTON_PAD_BOTTOM

Holds the vertical distance between each item button.

ITEM_BOX_COLOR
private static final com.badlogic.gdx.graphics.Color ITEM_BOX_COLOR

Holds the color of the item box which acts as the small box behind each item sprite.

TEXT_COLOR

private static final com.badlogic.gdx.graphics.Color TEXT_COLOR

262

Stores the color of the text displaying the quantity of each item in the crafting table.

itemManager
private ItemManager itemManager

Holds the ItemManager instance from which the Sprites for each item is retrieved.

inventory
private Inventory inventory

Holds the inventory from which the list of player items is retrieved.

assets
private Assets assets

Holds the universal Assets singleton used to retrieve the visual assets needed to create the
inventory list.

buttonListener
private com.badlogic.gdx.scenes.scene2d.utils.ClickListener
buttonListener

Stores the ClickListener used by the CraftingHud. All button clicks in the table are delegated to
this listener to be handled by the CraftingHud.

table
private com.badlogic.gdx.scenes.scene2d.ui.Table table

Stores the table containing all of the items in the crafting table.

itemCells
private com.badlogic.gdx.utils.Array<CraftingTable.ItemCell> itemCells

Holds an array containing the six cells which hold an item in the table.

craftedItemCell
private CraftingTable.ItemCell craftedItemCell

Stores the ItemCell displaying the item that is crafted as a result of the items in the crafting
table.

263

arrowImage
private com.badlogic.gdx.scenes.scene2d.ui.Image arrowImage

Holds the image displaying the arrow below the grid of items.

buttonMap
private java.util.HashMap<java.lang.Class,CraftingTable.ItemCell>
buttonMap

Maps an Item subclass with a item cell displaying this item.

Constructor Detail

CraftingTable
public CraftingTable(ItemManager itemManager, Inventory inventory,

com.badlogic.gdx.scenes.scene2d.utils.ClickListener buttonListener)

Accepts the itemManager from which to retrieve the items' sprites, the inventory from which to
retrieve the player's items, the ClickListener to which button clicks will be delegated, and the
height of the list.

Parameters:

itemManager - the item manager, used to retrieve item sprites so that they can be
displayed on the crafting table

inventory - the player's inventory, where items are transfered once they leave the
crafting table.

buttonListener - the button listener, which receives events once the crafting table's
buttons are pressed.

Method Detail

generateTable
public void generateTable()

Called when the crafting table's widgets and its table must be created.

addItem

public void addItem(java.lang.Class itemClass,int quantity)

264

Adds the given amount of the item inside a cell in the crafting table.

Parameters:

itemClass - the item type to add to the table

quantity - the amount to add to the crafting table

setCraftedItem
public void setCraftedItem(CraftingManager.Item craftedItem)

Sets the item displayed in craftedItem slot. This is the ItemCell where the crafted item is shown.
If null, the slot is emptied.

Parameters:

craftedItem - the item which will be shown on the slot below the arrow of the crafting
table.

emptyTable
public void emptyTable(boolean transferToInventory)

Called when the user leaves the crafting menu. Removes all of the items in the crafting table,
and places them back into the player's inventory. If the boolean argument is true, the items
inside the crafting table are put back in the player's inventory. If not, they are lost.

Parameters:

transferToInventory - if true, transfer to the items from the crafting table back to
the player's inventory

getTable
public com.badlogic.gdx.scenes.scene2d.ui.Table getTable()

Returns the table containing all the widgets in the crafting table.

isItemButton
public boolean isItemButton(
 com.badlogic.gdx.scenes.scene2d.Actor actor)

Returns true if the given actor is an item button inside the crafting table. An item button is every
button in the grid of six buttons the crafting table.

265

Parameters:

actor - the button which is tested to be a item button

Returns:

true, if the given button is contained inside the crafting table

getItemButtonClass
public java.lang.Class getItemButtonClass(com.badlogic.gdx.scenes.scen
e2d.Actor actor)

Returns the class belonging to the given button. That is, each itemButton in the crafting table
represents an item class. This method returns the class represented by the button.

Parameters:

actor - the itemButton whose item type is returned

Returns:

the item class held by the given button

isCraftedItemButton
public boolean isCraftedItemButton(com.badlogic.gdx.scenes.scene2d.Act
or actor)

Returns true if the given Actor is the craftedItemButton. That is, the button which contains the
preview of the item crafted from the items in the crafting table.

Parameters:

actor - the itemButton who's tested to be the craftedItemButton

Returns:

true, if the given button is the crafted item button

containsItem
public boolean containsItem(java.lang.Class itemClass)

Returns true if the given item is contained inside the crafting table.

Parameters:

266

itemClass - the item class which is checked to be contained in the table

Returns:

true, if the crafting table holds an item of the given type

isFull
public boolean isFull()

Returns true if the crafting table cannot take any more items.

buttonEquals
private boolean buttonEquals(
 com.badlogic.gdx.scenes.scene2d.Actor actor,
 CraftingTable.ItemCell itemCell)

Returns true if the actor corresponds to the itemCell. That is, if the actor is contained inside the
itemCell's button, the actor is technically equal to the itemCell. Used to verify whether the actor
which delegated a button click corresponds to a certain ItemCell.

Parameters:

actor - the actor used to check for equivalence

itemCell - the item cell used to check for equivalence

Returns:

true, if the actor belongs to the item cell

(See next page for InventoryList class)

267

II.3.1.35 InventoryList

Figure 54: InventoryList class diagram

 The InventoryList represents a list displaying the items in the player's inventory. This list

is contained inside the CraftingHud class, and is used to access the player's inventory, and to add

items into the CraftingTable.

public class InventoryList
extends java.lang.Object

268

Field Detail

LIST_WIDTH
public static final float LIST_WIDTH

Stores the width of the list in pixels for the target (480x320) resolution.

BUTTON_TEXT_DISTANCE
private static final float BUTTON_TEXT_DISTANCE

Holds the distance between the left of the button and the left starting point of the text.

BUTTON_IMAGE_DISTANCE
private static final float BUTTON_IMAGE_DISTANCE

Holds the distance between the left of the button and the center of each item image.

ITEM_BOX_WIDTH
private static final float ITEM_BOX_WIDTH

Stores the width of the item box which acts as a background behind each item image.

ITEM_BOX_HEIGHT
private static final float ITEM_BOX_HEIGHT

Stores the height of the item box which acts as a background behind each item image.

ITEM_BOX_COLOR
private static final com.badlogic.gdx.graphics.Color ITEM_BOX_COLOR

Holds the color of the item box which acts as the small box behind each item sprite.

TEXT_COLOR
private static final com.badlogic.gdx.graphics.Color TEXT_COLOR

Stores the color of the name of each item.

TEXT_DOWN_COLOR
private static final com.badlogic.gdx.graphics.Color TEXT_DOWN_COLOR

269

Stores the color of the name of each item when the item is pressed.

inventory
private Inventory inventory

Holds the inventory from which the list of player items is retrieved.

itemManager
private ItemManager itemManager

Holds the ItemManager instance from which the Sprites for each item is retrieved.

assets
private Assets assets

Holds the universal Assets singleton used to retrieve the visual assets needed to create the
inventory list.

buttonListener
private com.badlogic.gdx.scenes.scene2d.utils.ClickListener
buttonListener

Stores the ClickListener used by the CraftingHud. All button clicks in the table are delegated to
this listener to be handled by the CraftingHud.

scrollPane
private com.badlogic.gdx.scenes.scene2d.ui.ScrollPane scrollPane

Stores the ScrollPane which allows the item list stored inside the itemTable to be scrollable.

buttonTable
private com.badlogic.gdx.scenes.scene2d.ui.Table buttonTable

Stores the table where all item buttons are placed.

scrollPaneTable
private com.badlogic.gdx.scenes.scene2d.ui.Table scrollPaneTable

Holds the table where the scroll pane is contained. This is the high-level container for the list.

270

listHeight
private float listHeight

Holds the height of the inventory list.

buttonMap
private java.util.HashMap<java.lang.Class,com.badlogic.gdx.scenes.scen
e2d.ui.ImageTextButton> buttonMap

Maps an Item subclass with a button displaying this item.

Constructor Detail

InventoryList
public InventoryList(ItemManager itemManager, Inventory inventory,
com.badlogic.gdx.scenes.scene2d.utils.ClickListener buttonListener,
 float height)

Accepts the itemManager from which to retrieve the items' sprites, the inventory from which to
retrieve the player's items, the ClickListener to which button clicks will be delegated, and the
height of the list.

Parameters:

itemManager - the item manager

inventory - the inventory used to populate the list

buttonListener - the button listener which receives events whenever a button in the
list is pressed

height - the height of the list in pixels (relative to the target 480x320 resolution).

Method Detail

generateList
public void generateList()

Populates the list with buttons corresponding to all the items in the player's inventory.

updateList

public void updateList()

271

Called when the contents of the inventory list must be updated. Updates the buttons inside the
list, along with their quantities.

addItem
public void addItem(java.lang.Class itemClass,
 int quantity)

Adds the given amount of items to the inventory. If a button already exists for the item, the
number shown is updated. If the quantity is negative and makes the amount in the inventory
zero, the button is deleted.

Parameters:

itemClass - the item type to add to the list

quantity - the amount to add to the list

createItemButton
private
com.badlogic.gdx.scenes.scene2d.ui.ImageTextButton createItemButton(ja
va.lang.Class itemClass, int quantity)

Creates a button for the given item, with the given quantity specified in the button's text. Stores
it inside the buttonMap HashMap.

Parameters:

itemClass - the item that this button will display

quantity - the number displayed on the button

Returns:

a button displaying the given item in the given quantity, which can then be placed in the
inventory list

updateItemButton
private void updateItemButton(java.lang.Class itemClass,
 int quantity)

Updates the quantity displayed on the item button for the given class.

Parameters:

itemClass - the item whose quantity needs to be changed

272

quantity - the new quantity to display on the item button

addToList
private void addToList(com.badlogic.gdx.scenes.scene2d.ui.ImageTextBut
ton itemButton)

Adds the given button to the ScrollPane. Note that this method must be called AFTER
generateTable() is called.

Parameters:

itemButton - the item button to place on the inventory list

removeItemButton
private void removeItemButton(java.lang.Class itemClass)

Removes the item button from the inventory list. Note that items are refered to by their
corresponding class.

Parameters:

itemClass - the item to remove from the inventory list

getButtonClass
public java.lang.Class getButtonClass(com.badlogic.gdx.scenes.scene2d.
Actor actor)

Returns the class of the item which corresponds to the given button in the inventory list.

Parameters:

actor - the button whose item is returned

Returns:

the class of the item which corresponds to the given button

contains
public boolean contains(com.badlogic.gdx.scenes.scene2d.Actor actor)

Returns true if the given actor is a button contained inside the inventory. Used by CraftingHud to
dictate if a button from the inventory was pressed.

273

Parameters:

actor - the actor tested to be in the inventory list

Returns:

true, if the given actor is a button in the inventory list

buttonEquals
private boolean buttonEquals(
 com.badlogic.gdx.scenes.scene2d.Actor actor,
 com.badlogic.gdx.scenes.scene2d.ui.ImageTextButton button)

Returns true if the actor corresponds to the button. That is, if the actor is a widget contained
inside the button, the actor is considered to be equal to the given button. Used to verify whether
the actor which delegated a button click corresponds to a certain button in the inventory.

Parameters:

actor - the actor used to check for equivalence

button - the button used to check for equivalence

Returns:

true, if the given actor is a widget inside the given button

getTable
public com.badlogic.gdx.scenes.scene2d.ui.Table getTable()

Returns the table containing all of the buttons in the inventory list.

(See next page for Assets class)

274

II.3.1.36 Assets

Figure 55 : Assets class diagram (constructor and methods)

 The Assets class is a singleton. That is, only once instance of the class is used inside the

program. This instance is accessed using the static instance:Assets variable. This allows every

class in the program to have access to the visual assets of the game.

 Next, the class holds a reference to all visual assets used by the game. They are of the

type BitmapFont if the variable holds a font, TextureAtlas if the variable holds a sprite sheet, or

Sprite if the variable is holding the reference to an image. Note that the member variables are not

listed in the UML diagram nor in the explanations below, as they would be too long to list, and

they are irrelevant to the understanding of the source code.

 The default constructor is called only once, and simply creates an empty Assets object

which is held inside the instance variable. Before the splash screen is loaded, the

loadInitialAssets() method is called. This allows the game to load the splash screen's image,

along with all images needed for the loading screen. Like this, the game loads as little assets as

possible to show the first two screens, preventing the user from having to sit in front of a black

screen. On the other hand, the updateLoading() method is called on every game tick inside the

loading screen. This method uses the assetManager to load the visual assets needed for the

275

game. Further, the getProgress():float method returns an integer between 0 and 1, giving the

loading progress of the assets. When getProgress() is equal to 1, the assets are done loading. At

this time, the user leaves the loading screen and enters the main menu. Subsequently, the

storeLoadedAssets() method is called. This allows all the assets that have been loaded inside

updateLoading() to be stored inside the member variables of the Assets class.

 Finally disposeInitialAssets() simply frees the resources allocated to the images used

inside the splash screen and the loading screen. The dispose() method is called when the user

exits the game, and frees all memory allocated to the game's visual assets.

public class Assets
extends java.lang.Object

Constructor Detail

Assets
public Assets()

Creates an Assets instance responsible for the loading and visual and audio resources needed
for the application.

Method Detail

loadInitialAssets
public void loadInitialAssets()

Loads the assets used by the company splash screen and the loading screen. We need to load
their assets first before going to the loading screen and loading the all of the assets.

loadSplashScreenAssets
public void loadSplashScreenAssets()

Loads the assets which are needed for the loading screen. They are loaded when the splash
screen is shown.

queueAssetsForLoading

private void queueAssetsForLoading()

276

Queues all assets for loading. Loading is performed every time the updateLoading() method is
called. Before calling updateLoading(), the AssetManager must know which assets to load. This
method puts all assets to queue inside the AssetManager instance.

queueGeneralAssets
private void queueGeneralAssets()

Queues general assets for loading. Loading is performed every time the updateLoading()
method is called. Before calling updateLoading(), the AssetManager needs to know which
assets to load. This method puts all the general assets which persist throughout the game's
entire life-cycle to queue inside the AssetManager instance.

queueMainMenuAssets
public void queueMainMenuAssets()

Queues the main menu's assets for loading. Loading is performed every time the
updateLoading() method is called. Before calling updateLoading(), the AssetManager which
assets to load. This method puts all main menu assets assets to queue inside the
AssetManager instance.

queueGameAssets
private void queueGameAssets()

Queues the game's assets for loading. Loading is performed every time the updateLoading()
method is called. Before calling updateLoading(), the AssetManager which assets to load. This
method puts all game assets assets to queue inside the AssetManager instance.

updateLoading
public boolean updateLoading()

Call every frame inside a render() method to load the assets stored inside the AssetManager
instance. This performs loading on a separate thread so that the render() method which calls
this method can also update its appearance.

Returns:

Returns true if the loading is complete.

storeLoadedAssets

public void storeLoadedAssets()

277

Stores the assets loaded from the AssetManager into their respective member variables. Like
this, any class with access to the singleton can easily access the assets loaded from this class.

storeGeneralAssets
private void storeGeneralAssets()

Stores all of the general assets loaded by the AssetManager which are used in several different
screens, and persist throughout the game's entire life-cycle.

storeMainMenuAssets
public void storeMainMenuAssets()

Stores all of the heavy assets used only by the main menu screens, which were loaded by the
AssetManager. Note that these assets will be disposed of when the user exits the main menu
screen and enters the game.

storeGameAssets
private void storeGameAssets()

Retrieves and stores all of the assets used by the GameScreen which were loaded by the
AssetManager inside the Assets.update() method.

loadExtraAssets
private void loadExtraAssets()

Loads any extra assets that couldn't be loaded using the AssetManager.

loadGeneralAssets
public void loadGeneralAssets()

Loads and stores the general assets used by most screens in the game. Loads the assets
which couldn't be loaded with the AssetManager.

loadMainMenuAssets
public void loadMainMenuAssets()

Loads the assets used only by the main menu which can't be loaded by the Asset Manager in
the updateLoading() method, such as TTF fonts or button styles. MUST be called after loading
in the loading screen is complete, and and after updateLoading() returns true. These assets will
be disposed of when the user exits the main menu screens.

278

loadGameAssets
public void loadGameAssets()

Loads the assets used in-game which couldn't be loaded by the Asset Manager in the
updateLoading() method, such as SkeletonJson files. MUST be called after loading in the
loading screen is complete, and and after updateLoading() returns true. Otherwise, there will be
certain atlases and assets that won't be loaded that will cause
NullPointerExceptions.getProgress

public float getProgress()

Returns the loading progress for the assets. Note that this method will return zero if the
updateLoading() method has not been called yet.

Returns:

A value between 0.0f and 1.0f indicating the progress of the loading.

disposeInitialAssets
public void disposeInitialAssets()

Disposes of any assets used by the loading screen or the company splash screen to free up
system resources.

disposeMainMenuAssets
public void disposeMainMenuAssets()

Dispose all of the heavy assets needed only by the main menu and all its associated screens.
Called when the user leaves the main menu in order to free up resources for the GameScreen.

dispose
public void dispose()

Called on application quit inside the Survivor class. Frees any audio/visual resources used by
the application.

279

II.3.1.37 CraftingManager

Figure 56: CraftingManager class diagram

 The CraftingManager essentially dictates whether or not a given list of items forms a

combination. This singleton is used by the CraftingHud whenever the user places items on the

CraftingTable. When this happens, the list of items is passed to the

getResult(Array<Item>):Item method. If the items produce a result, the result is returned.

public class CraftingManager
extends java.lang.Object

Field Detail

instance
public static final CraftingManager instance

Holds the singleton instance to the CraftingManager.

combinations
private com.badlogic.gdx.utils.Array<CraftingManager.Combination>
combinations

Stores an array of all possible crafting combinations.

axe
public CraftingManager.Combination axe

Possible crafting combination.

280

rifle
public CraftingManager.Combination rifle

Possible crafting combination.

gunpowder
public CraftingManager.Combination gunpowder

Possible crafting combination.

bullet
public CraftingManager.Combination bullet

Possible crafting combination.

teleporter
public CraftingManager.Combination teleporter

Possible crafting combination.

Constructor Detail

CraftingManager
private CraftingManager()

Instantiates a new crafting manager.

Method Detail

getResult
public CraftingManager.Item getResult(
 com.badlogic.gdx.utils.Array<CraftingManager.Item> items)

Returns the resulting item crafted using the given array of items. If null, no result is formed using
the given list of items.

Parameters:

items - a list of items. If the given combination can craft an item, that item is returned

Returns:

281

returns the item that can be crafted by the given list of items. Null, if the combination
cannot craft anything.

II.3.1.37b ItemManager and ZombieManager

Figure 57: ItemManager class diagram

 The ItemManager class is responsible for pooling Item instances and sprites. In fact, this

is a crucial optimization for the game. Instead of creating Item instances whenever the user

collects an item, that item is simply refered to by its class (e.g., Wood.class). When the

CraftingTable or the InventoryList needs to access the data fields for an item,

ItemManager.obtainItem() is called, and an Item instance is returned. The same thing happens

with regards to item sprites. This prevents the application from constantly creating and

destroying Item instances and sprites, and is thus an important optimization.

public class ItemManager
extends java.lang.Object

Field Detail

itemPools
private java.util.HashMap<java.lang.Class,com.badlogic.gdx.utils.Pool<
Item>> itemPools

Holds a HashMap where every item subclass is a key, and its value is a pool of items of that
class.

itemSpritePools

282

private java.util.HashMap<java.lang.Class,com.badlogic.gdx.utils.Pool<
com.badlogic.gdx.graphics.g2d.Sprite>> itemSpritePools

Holds a HashMap where every item subclass is a key, and its value is a pool of inventory sprites
for that item.

assets
private Assets assets

Stores the universal assets singleton used to retrieve Sprite templates for each item.

Constructor Detail

ItemManager
public ItemManager()

Creates an itemManager which provides access to Item instances. Efficient, as it uses pools.

Method Detail

obtainItem
public <T extends Item> T obtainItem(java.lang.Class<T> itemClass)

Obtains an Item instance of the given class.

Type Parameters:

T - the generic type of the Item class

Parameters:

itemClass - the item class whose object will be returned

Returns:

an instance of the given Item class.

freeItem
public void freeItem(Item item)

Frees an Item instance back into the manager's internal pools for later reuse.

Parameters:

283

item - the item to free back into a pool

getSprite
public <T extends
Item> com.badlogic.gdx.graphics.g2d.Sprite getSprite(java.lang.Class<T
> itemClass)

Obtains an Sprite instance of the given class to display in an inventory.

Type Parameters:

T - the generic type of the item

Parameters:

itemClass - the item class to obtain a sprite for

Returns:

a sprite instance for the given item type.

freeSprite
public <T extends Item> void freeSprite
 (com.badlogic.gdx.graphics.g2d.Sprite sprite,
 java.lang.Class<T> itemClass)

Frees the specified sprite instance back inside an internal pool for later reuse.

Type Parameters:

T - the generic type of the item

Parameters:

sprite - the sprite to free back into a pool

itemClass - the item class displayed by the sprite

284

Figure 58: ZombieManager class diagram

 The ZombieManager is a helper class to the World class. Instead of having the World

class update every zombie's game logic, the Zombie instance is passed to the ZombieManager,

and the zombie is updated there. This avoids cluttering the World class with the zombies'

functionalities.

public class ZombieManager
extends java.lang.Object

Field Detail

IDLE_TIME_EXPLORATION

private static final float IDLE_TIME_EXPLORATION

285

Stores the amount of time the zombie stays idle before starting to move again (in
EXPLORATION mode).

ZOMBIE_VIEW_DISTANCE
private static final float ZOMBIE_VIEW_DISTANCE

Holds the x-distance between the zombie and the player so that the zombie can first see the
player.

FOLLOW_DISTANCE
private static final float FOLLOW_DISTANCE

Stores the minimum x-distance between the zombie and the player so that the zombie will
continue to follow him.

ZOMBIE_BACK_VIEW
private static final float ZOMBIE_BACK_VIEW

Stores the x-distance between the zombie and the player so that the zombie can see the player
even when he's in back of the zombie.

IDLE_TIME_COMBAT
private static final float IDLE_TIME_COMBAT

Stores the amount of time the zombie stays idle before choosing a move to attack the player (in
COMBAT mode).

world
private World world

Holds the World instance that the zombies are a part of. Used to access the convenience
methods created for the player and needed for the zombies.

Constructor Detail

ZombieManager
public ZombieManager(World world)

Creates a ZombieManager which updates zombies and their AI. Accepts the World instance
used by the game in order to access the convenience methods used by the player and similarly
needed to update zombies.

286

Parameters:

world - the world, whose methods are used to control zombies and get access to the
player's information

Method Detail

update
public void update(Zombie zombie, float deltaTime)

Updates the game logic for the given zombie.

Parameters:

zombie - the zombie to update

deltaTime - the execution time of the previous frame.

updateExploring
private void updateExploring(Zombie zombie, float deltaTime)

Updates the game logic of the given zombie when he is in EXPLORING state.

Parameters:

zombie - the zombie to update

deltaTime - the execution time of the previous frame.

updateAIExploring
private void updateAIExploring(Zombie zombie, float deltaTime)

Updates the zombie's state according to the principles of his artifical intelligence. Called when
the zombie is in Exploration mode.

Parameters:

zombie - the zombie to update

deltaTime - the execution time of the previous frame.

updateCombat

private void updateCombat(Zombie zombie, float deltaTime)

287

Updates the zombie when he is in COMBAT mode and fighting the player.

Parameters:

zombie - the zombie to update

deltaTime - the execution time of the previous frame.

updateAICombat
private void updateAICombat(Zombie zombie, float deltaTime)

Updates the zombie's state according to the principles of his artifical intelligence. Called when
the zombie is in COMBAT mode.

Parameters:

zombie - the zombie to update

deltaTime - the execution time of the previous frame.

chooseNextMove
private void chooseNextMove(Zombie zombie)

Makes the given zombie choose the next move to attack the player with.

Parameters:

zombie - the zombie whose next move is chosen

charge
private void charge(Zombie zombie)

Make the zombie charge towards the player.

Parameters:

zombie - the zombie that will charge

smash
private void smash(Zombie zombie)

Makes the zombie perform a smash.

Parameters:

288

zombie - the zombie that will perform a smash and ultimately an earthquake.

checkCollisions
private void checkCollisions(Zombie zombie)

Checks if the zombie has intersected with any GameObject which is pertinent to the zombie,
such as the player.

Parameters:

zombie - the zombie which is tested for collisions with other GameObjects.

moveToStart
private void moveToStart(Zombie zombie)

Moves the zombie back to his starting position.

Parameters:

zombie - the zombie to move to his starting position

checkLevelBoundaries
private void checkLevelBoundaries(Zombie zombie)

Checks if the zombie is within the confines of the combat level. If not, the zombie is respawned
at the right place.

Parameters:

zombie - the zombie to check level boundaries with

checkPlayerProximity
private void checkPlayerProximity(Zombie zombie)

Sets the zombie to ALERT state if the zombie is not already alerted.

Parameters:

zombie - the zombie to check player proximity with

followPlayer
private void followPlayer(Zombie zombie)

289

Makes the zombie walk towards the player to essentially follow him.

Parameters:

zombie - the zombie which is meant to follow the player.

zombieSeesPlayer
private boolean zombieSeesPlayer(Zombie zombie)

Returns true if the zombie sees the player in the world.

Parameters:

zombie - the zombie who is tested to see the player

Returns:

true, if the given zombie can see the world's player.

canFollowPlayer
private boolean canFollowPlayer(Zombie zombie)

Returns true if the given zombie is already following the player, and can continue to follow him.
The player has to be within a given distance from the zombie.

Parameters:

zombie - the zombie which is tested to be able to follow the player.

Returns:

true, if the zombie can follow the player

isClose
private boolean isClose(Player player, Zombie zombie)

Returns true if the player is close to the given zombie.

Parameters:

player - the player which is tested for proximity with the given zombie

zombie - the zombie which is tested for proximity with the given player.

290

Returns:

true, if the player and the zombie are close in distance

isVeryClose
private boolean isVeryClose(Player player, Zombie zombie)

Returns true if the player is very close to the zombie, and the zombie can even see the player
from in back of him.

Parameters:

player - the player which is tested for proximity with the given zombie

zombie - the zombie which is tested for proximity with the given player.

Returns:

true, if the player and the zombie are very close in distance

II.3.1.38 GestureManager

Figure 59 : GestureManager class diagram

 The role of the GestureManager is to detect touch gestures from the user's finger, and to

update the world's logic accordingly.

 The first constant in the GestureManager class is the JUMP_FLING_SPEED floating-

point. It dictates the velocity in the y-axis in pixels per second that a swipe must have in order to

make the player jump to a higher layer or fall to a lower layer. Also, the GestureManager holds a

291

reference to the World. This is because the manager needs a reference to the player in the world.

In fact, when the manager receives a swipe event, it will call the player's jump() method or fall()

method depending on whether the swipe went upwards or downwards. Furthermore, the

GestureManager has the paused boolean. If true, the GestureManager does not receive any

gesture events.

 The constructor of the class accepts the World instance used to control game logic. In

terms of behaviour, the fling(float, float, int):boolean method is called when the user performs a

swipe on the screen. The first two parameters indicate the x and y velocity of the swipe in pixels

per second. The method returns true, telling LibGDX that the swipe gesture has been handled.

Thus, the fling() method will not be called again on the same frame. Next, the pause() and

resume() methods change the paused field accordingly, and either pause or resume gestures

handling in the class.

public class GestureManager
extends com.badlogic.gdx.input.GestureDetector.GestureAdapter

Field Detail

JUMP_FLING_SPEED
public static final float JUMP_FLING_SPEED

Stores the minimum speed the user has to fling to make the player jump or fall.

world
private World world

Stores the world that the manager will modify according to user input.

paused
private boolean paused

True if the game is paused, so that no gestures should be registered nor handled.

Constructor Detail

GestureManager

292

public GestureManager(World world)

Creates an InputManager with the given world. This manager receives all touch events and
reacts by calling the appropriate methods for the World.

Parameters:

world - the world whose methods are called when gestures should control player
movement.

Method Detail

fling
public boolean fling(float velocityX,float velocityY, int button)

Called when the user flicks the screen. Velocity is in pixels/second. This method is also called
on Desktop.

Specified by:

fling in
interface com.badlogic.gdx.input.GestureDetector.GestureListener

Overrides:

fling in class com.badlogic.gdx.input.GestureDetector.GestureAdapter

Parameters:

velocityX - the x velocity of the swipe

velocityY - the y velocity of the swipe

button - the button which was pressed while flinging (unimportant for Android)

Returns:

true if the fling event can be sent to other GestureAdapters

pause
public void pause()

Pauses the GestureManager so that it doesn't call any of the world's methods. Effectively
pauses gesture handling.

293

resume
public void resume()

Resumes the GestureManager so that it can call the world's methods based on touch gestures.
Effectively resumes gesture handling.

II.3.1.38 InputManager

Figure 60 : InputManager class diagram

 The InputManager is similar to the GestureManager. The main difference, however, is

that the InputManager detects taps instead of gestures.

 First, the InputManager holds a reference to the World. This allows the manager to call

the World.touchUp(x:float, y:float) method. However, before calling this method, the

InputManager must first convert touch coordinates into world coordinates. To do this, the

manager must have an instance of the worldCamera, which is the camera used to render the

world and its surrounding GameObjects. Much like the GestureManager, this class has a paused

flag. If true, the manager stops processing input.

294

 The constructor of the class accepts the World instance used to control game logic. Also,

it accepts the worldCamera used to render GameObjects. This allows the manager's member

variables to be populated with the constructor's parameters.

 Next, touchUp(x:int, y:int, pointer:int, button:int):boolean method is called by LibGDX

when the user touches the screen. The touch point is given in screen coordinates, which is why it

must be converted into world coordinates using the worldCamera.unproject() method. Moreover,

the pointer and button parameters are irrelevant, as these parameters are only useful if the target

platform is Windows or Mac. Finally, the pause() and resume() methods change the paused field

accordingly, and either pause or resume gestures handling in the class.

public class InputManager
extends java.lang.Object
implements com.badlogic.gdx.InputProcessor

Field Detail

world
private World world

Stores the world that the manager will modify according to user input.

worldCamera
private com.badlogic.gdx.graphics.OrthographicCamera worldCamera

Stores the worldCamera, used to convert touch points to world coordinates.

inputListener
private InputManager.InputListener inputListener

The InputListener which delegates events to the GameScreen. Allows the GameScreen to know
about certain input events.

touchPoint
private com.badlogic.gdx.math.Vector3 touchPoint

Helper Vector3 used to store the latest touch point.

paused

295

private boolean paused

Holds true if the game is paused, and no input events should be delegated to the world.

Constructor Detail

InputManager
public InputManager(World world,
 com.badlogic.gdx.graphics.OrthographicCamera worldCamera)

Creates an InputManager with the given world. This manager receives all touch events and
reacts by calling the appropriate methods for the World.

Parameters:

world - the world, whose methods are called when the user taps the screen

worldCamera - the world camera, used to convert screen coordinates to world
coordinates.

Method Detail

touchUp
public boolean touchUp(int screenX, int screenY, int pointer,
 int button)

Called when the user releases a press anywhere on the screen.

Specified by:

touchUp in interface com.badlogic.gdx.InputProcessor

Parameters:

screenX - the screen x-position of the tap

screenY - the screen y-position of the tap

pointer - the pointer of the tap

button - the button of the tap (irrelevant for Android devices)

Returns:

true, if the event should be delegated to other touchUp() methods.

296

pause
public void pause()

Pauses the InputManager so that it doesn't call any of the world's methods. Effectively pauses
input.

resume
public void resume()

Resumes the InputManager so that it can call the world's methods based on touch events.
Effectively resumes input handling.

keyDown
public boolean keyDown(int keycode)

Called when a key has been pressed.

Specified by:

keyDown in interface com.badlogic.gdx.InputProcessor

Parameters:

keycode - the keycode of the pressed key

Returns:

true, if the keyDown() method of other InputProcessors should be delegated

setInputListener
public void setInputListener(InputManager.InputListener listener)

Registers the given InputListener to this InputManager instance. The InputManager will then call
method from the given listener.

getInputListener
public InputManager.InputListener getInputListener()

Returns the InputListener instance whose methods are delegated by this InputManager
instance.

keyUp

297

public boolean keyUp(int keycode)

Specified by:

keyUp in interface com.badlogic.gdx.InputProcessor

See Also:

InputProcessor.keyUp(int)

keyTyped
public boolean keyTyped(char character)

Specified by:

keyTyped in interface com.badlogic.gdx.InputProcessor

See Also:

InputProcessor.keyTyped(char)

touchDown
public boolean touchDown(int screenX, int screenY, int pointer,
 int button)

Specified by:

touchDown in interface com.badlogic.gdx.InputProcessor

See Also:

InputProcessor.touchDown(int, int, int, int)

touchDragged
public boolean touchDragged(int screenX, int screenY,int pointer)

Specified by:

touchDragged in interface com.badlogic.gdx.InputProcessor

See Also:

InputProcessor.touchDragged(int, int, int)

mouseMoved

298

public boolean mouseMoved(int screenX,
 int screenY)

Specified by:

mouseMoved in interface com.badlogic.gdx.InputProcessor

See Also:

InputProcessor.mouseMoved(int, int)

scrolled
public boolean scrolled(int amount)

Specified by:

scrolled in interface com.badlogic.gdx.InputProcessor

See Also:

InputProcessor.scrolled(int)

II.3.1.39 ConfirmDialog

Figure 61 : ConfirmDialog class diagram

299

 The ConfirmDialog is a dialog which prompts the user with a message, which is usually a

question, followed by a Yes and a No button. It allows the program to prompt the user to confirm

a choice.

public class ConfirmDialog
extends com.badlogic.gdx.scenes.scene2d.ui.Dialog

Field Detail

assets
private Assets assets

Holds the Assets singleton used to retrieve pre-defined ui styles.

BACKGROUND_MIN_WIDTH
private static final float BACKGROUND_MIN_WIDTH

Holds the width of the background. Background is scaled up if it is too small for the dialog's
widgets.

BACKGROUND_MIN_HEIGHT
private static final float BACKGROUND_MIN_HEIGHT

Holds the height of the background. Background is scaled up if it is too small for the dialog's
widgets.

BUTTON_BACKGROUND_SPACING
private static final float BUTTON_BACKGROUND_SPACING

Stores the spacing between the bottom of the buttons and the bottom of the nine-patch
background.

BUTTON_SPACING
private static final float BUTTON_SPACING

Stores the horizontal spacing between the "Yes" and "No" buttons.

messageLabel

private com.badlogic.gdx.scenes.scene2d.ui.Label messageLabel

300

Holds the label displaying the confirm dialog's message.

yesButton
private com.badlogic.gdx.scenes.scene2d.ui.TextButton yesButton

Stores the 'Yes' and the 'No' buttons which prompt the user for confirmation.

noButton
private com.badlogic.gdx.scenes.scene2d.ui.TextButton noButton

Stores the 'Yes' and the 'No' buttons which prompt the user for confirmation.

Constructor Detail

ConfirmDialog
public ConfirmDialog(java.lang.String message,
 com.badlogic.gdx.scenes.scene2d.utils.ClickListener clickListener)

Creates the confirm dialog with the given confirmation message as a title. The clickListener is
registered to the 'Yes' button. Thus, its clicked() method will be called when the yesButton is
pressed.

Parameters:

message - the message shown on the dialog

clickListener - the listener which receives an event whenever the "Yes" button is
pressed on the dialog.

Method Detail

getConfirmButton
public
com.badlogic.gdx.scenes.scene2d.ui.TextButton getConfirmButton()

Returns the "Yes" button clicked when the user confirms his choice.

setMessage
public void setMessage(java.lang.String message)

Sets the message shown on the confirm dialog.

301

Parameters:

message - the new message to display

II.3.1.40 SpriteUtils

Figure 62 : SpriteUtils class diagram

 The SpriteUtils class is a short utility class meant to perform basic operations with textures and

sprites.

public class SpriteUtils
extends java.lang.Object

Constructor Detail

SpriteUtils

public SpriteUtils()

Method Detail

setPosition
public static void setPosition(
com.badlogic.gdx.graphics.g2d.Sprite sprite, float x, float y)

Positions the center of the sprite at the given (x,y) coordinates in world coordinates.

Parameters:

sprite - the sprite whose position to alter

x - the new center x-position of the sprite

y - the new center y-position of the sprite

302

fixBleeding
public
static void fixBleeding(com.badlogic.gdx.graphics.g2d.TextureRegion re
gion)

Fixes bleeding on a TextureRegion, removing the edge pixels that can bleed into the edges of
the texture.

Parameters:

region - the region whose bleeding will be fixed

(See next page for Profile class)

303

II.3.1.41 Profile

Figure 63 : Profile class diagram

 A Profile is used to hold the user's save data. It allows the player to load an old save file

304

and continue in the game where he left off.

 The first variable in the class is the profileId integer, a number used to identify each

profile. These profiles are numbered from zero and on, sequentially. The id corresponds to the

order of the profiles in the World Select Menu. That is, the profile with id equal to zero will

appear first on the profile list. Next, the dateLastModified variable simply holds the date where

the profile was last saved. It allows each profile to display a time stamp in the World Select

Menu.

 Next is the more interesting terrainRowOffset and terrainColOffset. These integers hold

the cell coordinates of the bottom-left layer in the terrainLayers matrix inside the TerrainLevel

class. Its purpose is to retain where the player was last located in the world. In fact, when a

profile is loaded, the TerrainLevel will know that the TerrainLayer in terrainLayers[0][0]

should have row terrainRowOffset and column terrainColOffset. As such, the world will be

generated with the right data such that the player will be dropped at the same place he left off in

when last quitting the game.

 On a different note, the worldSeed integer holds the seed used to procedurally generate

the world. Since each Profile has a worldSeed, the world will always look the same, since all

terrain geometry and objects are generated using this random number generator seed.

One of the most complex data fields of the class is the scavengedLayerObjects HashMap.

This HashMap holds an integer key, to which another HashMap is assigned as a value. This inner

HashMap has an integer key which holds an ArrayList of Integers. To start, the first, outer

integer key denotes the row of a TerrainLayer. Thus, scavengedLayerObjects.get(0) returns a

HashMap for each TerrainLayer in row zero. The inner integer key denotes a layer’s column.

Thus, accessing scavengedLayerObjects.get(0).get(0) returns an ArrayList of integers for row

zero and column zero. This ArrayList contains a list of objectIds. These are the ids for the

GameObjects which have been scavenged by the player. For instance, if the player chops down a

tree in row zero, column zero, and the tree’s id was one, then

scavengedLayerObjects.get(0).get(0) will return an ArrayList with the integer one inside.

Afterwards, whenever the TerrainLayer with row zero and column zero has to be populated with

305

GameObjects, the following happens. Say that the TerrainLayer randomly generates a number,

and from that number dictates that a tree should be placed on the layer. If that tree is the second

object to be placed on the layer, its objectId will be one. Thus, since one is part of the ArrayList

of scavenged objects, the tree will not be placed on the layer. In this case, the layer knows that

the player has chopped down the tree. Thus, the layer will skip to placing the third object in the

level. This is how trees and zombie are never spawned again once they are killed or scavenged.

Finally, the Profile holds a reference to the Loadout and the Inventory which belongs to

the player. This allows the player’s items and weapons to be saved to the hard drive and retrieved

once the profile is loaded.

Next, the Profile constructor simply creates a profile with default values for its member

variables. Only once the read(Json, JsonValue):void is called do the data fields get populated

with hard drive information. In fact, the purpose of this read(Json, JsonValue):void method is to

read a JSON file and to populate the member variables with its information. Conversely, the

write(Json):void method is called when the profile needs to be saved to the hard drive. In this

case, every data field of the class is parsed into a string and written to a JSON file.

On a separate note, the getScavengedObjects(int, int):ArrayList<Integer> accepts a row

and a column as parameters. The method will then return an ArrayList containing the objectIds

of the objects that have been scavenged in the layer denoted by the given row and the column.

Next, the addScavengedLayerObject(GameObject) method accepts a GameObject which

was scavenged by the player. The way the method works is the following

//Pseudocode start

scavengedLayerObjects.get(go.terrainCell.row).get(go.terrainCell.col).add(go.objectId);

//Pseudocode end

 As such, the GameObject will be registered inside the scavengedLayerObjects HashMap

and thus will never respawn.

 Similarly, the addScavengedLayerObject(row, col, objectId) performs the same

306

functionality, except that it accepts the row and the column of the TerrainLayer to which to add

the objectId. It further accepts the objectId which to add to the ArrayList in the HashMap.

public class Profile
extends java.lang.Object
implements com.badlogic.gdx.utils.Json.Serializable

Field Detail

MAX_WORLD_SEED
public static final int MAX_WORLD_SEED

Stores the max world seed that will be used to create the world. Possibly the higher the value,
the more probability in world diversity.

firstTimeCreate
private boolean firstTimeCreate

True if this profile was just created, and the player has not saved the game since creating the
level.

profileId
private int profileId

Stores the id of the profile, where 0 is the first profile shown in the world selection list.

dateLastModified
private java.util.Date dateLastModified

Stores the date the profile was last modified.

dateFormatter
private transient java.text.SimpleDateFormat dateFormatter

Helper object used to convert the date last modified into a string.

terrainRowOffset
private int terrainRowOffset

Stores the row offset to use for the TerrainLayers of the level. These cell coordinates are the
coordinates of the bottom-left- most layer of the TerrainLevel when the game was saved. Thus,

307

if this offset is specified, the TerrainLevel can choose to define the bottom-left- most layer to
have these cell coordinates, and the player will be dropped in the same cell he left off in the
TerrainLevel.

terrainColOffset
private int terrainColOffset

Stores the column offset to should use for the TerrainLayers of the level. These cell coordinates
are the coordinates of the bottom-left- most layer of the TerrainLevel when the game was
saved. Thus, if this offset is specified, the TerrainLevel can choose to define the bottom-left-
most layer to have these cell coordinates, and the player will be dropped in the same cell he left
off in the TerrainLevel.

lastXPos
private float lastXPos

The player's last x-position when he saved the profile. Allows the player to spawn in exactly the
same place. Note that this position is relative to the left-most x-position of the layer where the
player resided on game save.

worldSeed
private int worldSeed

Stores the world seed. Each profile has a different seed. The same seed creates the same
world.

scavengedLayerObjects
private java.util.HashMap<java.lang.Integer,java.util.HashMap<java.lan
g.Integer,java.util.ArrayList<java.lang.Integer>>>
scavengedLayerObjects

Stores a HashMap containing lists of scavenged objects in each TerrainLayer. First key is the
layer's row, second is the layer's column. The array stores the list of objectIds for all
GameObjects that have been scavenged on that layer.

loadout
private Loadout loadout

Stores the player's loadout so that it stays constants when re-entering the game.

inventory

308

private Inventory inventory

Holds the player's inventory, which contains all of the player's collected items.

Constructor Detail

Profile
public Profile()

Creates a default profile with profileId = 0. This constructor will be called when a Profile object is
read from a JSON file.

Profile
public Profile(int id)

Creates a new profile starting from the beginning of the game. Called when the user creates a
new world.

Parameters:

id - ID of the profile we want to create. The first profile has ID 0, and is the first shown in
the world selection list.

Method Detail

getDateLastModified
public java.util.Date getDateLastModified()

Returns the date at which the profile was last modified and saved to the hard drive. Note that
the Date object's time is mutable.

setProfileId
public void setProfileId(int profileId)

Sets the profile Id of the profile.

getProfileId
public int getProfileId()

Returns the if of the profile, where 0 is the first profile shown in the world selection list

309

setWorldSeed
public void setWorldSeed(int worldSeed)

Sets the world seed of the profile. Changing it changes the entire world. Should not be changed
after profile creation, or will break save file.

getWorldSeed
public int getWorldSeed()

Returns the world seed used to procedurally generate the world. Same seed = same world.

setTerrainRowOffset
public void setTerrainRowOffset(int offset)

Sets the terrain row offset to be used the next time the game is loaded. Set this to the row of the
bottom-left-most layer of the level to resume the game where the player left off last.

getTerrainRowOffset
public int getTerrainRowOffset()

Gets the terrain row offset which was saved to profile. Specify this as the rowOffset of the
TerrainLevel to start the game at the same place the user left off.

setTerrainColOffset
public void setTerrainColOffset(int offset)

Sets the terrain column offset to be used the next time the game is loaded. Set this to the
column of the bottom-left-most layer of the level to resume the game where the player left off
last.

getTerrainColOffset
public int getTerrainColOffset()

Gets the terrain column offset which was saved to profile. Specify this as the colOffset of the
TerrainLevel to start the game at the same place the user left off.

setLastXPos
public void setLastXPos(float x)

310

Updates the last x-position where the player was upon saving the profile. Note that this position
is relative to the left-most x-position of the layer where the player resided on profile save.

getLastXPos
public float getLastXPos()

Returns the last x-position where the player was upon saving the profile. Note that this position
is relative to the left-most x-position of the layer where the player resided on profile save.

profileSaved
private void profileSaved()

Called when the profile has been saved to the hard drive.

toString
public java.lang.String toString()

Returns a string representation for the profile, used for each item of the world selection list from
the world select screen.

Overrides:

toString in class java.lang.Object

write
public void write(com.badlogic.gdx.utils.Json json)

Indicates how a Profile object is converted to a JSON file.

Specified by:

write in interface com.badlogic.gdx.utils.Json.Serializable

See Also:

Json.Serializable.write(com.badlogic.gdx.utils.Json)

read
public void read(com.badlogic.gdx.utils.Json json,
 com.badlogic.gdx.utils.JsonValue jsonData)

311

Indicates how a JSON file is read to be converted into a Profile object. Note that the default
Profile constructor is called before this method.

Specified by:

read in interface com.badlogic.gdx.utils.Json.Serializable

See Also:

Json.Serializable.read(com.badlogic.gdx.utils.Json,
com.badlogic.gdx.utils.JsonValue)

writeScavengedLayerObjects
private void writeScavengedLayerObjects(com.badlogic.gdx.utils.Json js
on)

Converts the scavengedLayerObjects HashMap into a String and writes it to the Profile's JSON
file.

Parameters:

json - Json object where the HashMap is written

readInventory
private void readInventory(com.badlogic.gdx.utils.Json json,
 com.badlogic.gdx.utils.JsonValue jsonData)

Reads the inventory from the Profile's JSON file and converts it into an Inventory instance, so
that the user can have his saved Inventory back.

Parameters:

json - Json object where the inventory HashMap is read from.

jsonData - JsonValue object used to read data

readScavengedLayerObjects
private void readScavengedLayerObjects(com.badlogic.gdx.utils.Json
 json,com.badlogic.gdx.utils.JsonValue jsonData)

Reads the String stored inside the JSON file and converts it into a HashMap for the
scavengedLayerObjects variable.

getScavengedLayerObjects

312

public java.util.ArrayList<java.lang.Integer> getScavengedLayerObjects
 (int row,int col)

Returns a list of all of the objectIds that have been scavenged on the given TerrainLayer,
denoted by its row and column.

Parameters:

row - The row of the TerrainLayer

col - The column of the TerrainLayer

Returns:

A list of objectIds of each object scavenged on the given TerrainLayer

addScavengedLayerObject
public void addScavengedLayerObject(GameObject gameObject)

Adds the given GameObject as a scavenged GameObject. It is added as a scavenged
GameObject at the TerrainLayer where it resides, so that the GameObject is never instantiated
there again.

Parameters:

gameObject - The GameObject which was scavenged

addScavengedLayerObject
public void addScavengedLayerObject(int row, int col,int objectId)

Adds a scavenged object to the TerrainLayer, specified with the layer's cell coordinates.
Accepts the objectId of the scavenged GameObject. Makes it so that the GameObject won't
respawn the next time the layer is displayed.

Parameters:

row - The TerrainLayer's row

col - The TerrainLayer's column

objectId - The objectId of the scavenged GameObject

getLoadout

public Loadout getLoadout()

313

Gets the loadout used by the player.

setLoadout
public void setLoadout(Loadout loadout)

Sets the loadout used by the player.

getInventory
public Inventory getInventory()

Retrieves the player's inventory, which contains all of the items collected by the player.

setInventory
public void setInventory(Inventory inventory)

Sets the player's inventory, which contains all of the items collected by the player.

getScavengedLayerObjects
public java.util.HashMap<java.lang.Integer,java.util.HashMap<java.lang
.Integer,java.util.ArrayList<java.lang.Integer>>> getScavengedLayerObj
ects()

Returns a HashMap containing an array for each TerrainLayer. This array specifies the
objectIds of the GameObjects that have been scavenged on that layer. First key is the
TerrainLayer's row, and second is the TerrainLayer's column.

setScavengedLayerObjects
public void setScavengedLayerObjects(java.util.HashMap<java.lang.Integ
er,java.util.HashMap<java.lang.Integer,java.util.ArrayList<java.lang.I
nteger>>> scavengedLayerObjects)

Sets the HashMap containing objectId arrays for each TerrainLayer. These array specify the
objectIds of the GameObjects that have been scavenged on a certain layer.

isFirstTimeCreate
public boolean isFirstTimeCreate()

Returns true if the profile was just created. In fact, if the player has not saved the profile since
creating it, this method returns true.

setFirstTimeCreate

314

public void setFirstTimeCreate(boolean firstTimeCreate)

Sets whether or not this is the first time the profile is created. In fact, if the player has not saved
the profile since creating it, firstTimeCreate should be true.

II.3.1.42 SoundManager and MusicManager

Figure 64 : SoundManager and MusicManager class diagrams

 The SoundManager is responsible for playing all of the sounds in the game, whereas the

MusicManager is responsible for playing the music. Note that music and sound was separated to

ensure that, if ever we wanted music to play at a different volume than the sound effects, we

could easily control their volumes independently, without any necessary workarounds.

public class SoundManager
extends java.lang.Object

Field Detail

volume
private float volume

Stores the volume to play all sound clips at by default

soundEnabled

private boolean soundEnabled

315

Stores whether or not sound is enabled.

Constructor Detail

SoundManager
public SoundManager()

Instantiates a new sound manager.

Method Detail

play
public void play(com.badlogic.gdx.audio.Sound sound)

Plays a sound instance at maximum volume relative to the sound manager's volume. If music is
disabled, the music is put on standby until music is enabled.

Parameters:

sound - the sound to play

play
public void play(com.badlogic.gdx.audio.Sound sound,
 float volume)

Plays a sound instance at a custom volume. If sound is disabled, the sound is not played.

Parameters:

sound - the sound to play

volume - the volume at which to play the sound

setVolume
public void setVolume(float volume)

Set the volume of the manager. Any subsequent sound will be played at this volume by default.
The volume has range zero (quiet) to 1 (loudest).

Parameters:

volume - the new volume at which the sounds will all be played (between 0 and 1)

316

setEnabled
public void setEnabled(boolean enabled)

Set whether the music is enabled or not. If disabled, music does not play.

Parameters:

enabled - if true, sound effects are allowed to play.

public class MusicManager
extends java.lang.Object

Field Detail

music
private com.badlogic.gdx.audio.Music music

Stores the music which is currently being played by the manager. Note that, if music is disabled,
this variable is populated with the music that will be played once the music is re-enabled

volume
private float volume

Stores the volume to play all music clips at

musicEnabled
private boolean musicEnabled

Stores whether or not music is enabled.

Constructor Detail

MusicManager
public MusicManager()

Instantiates a new music manager.

Method Detail

play

317

public void play(com.badlogic.gdx.audio.Music music)

Plays a music instance at the managers volume setting. If music is disabled, the music is put on
standby until music is enabled.

Parameters:

music - the music to play

stop
public void stop()

Stop the current playing music.

setVolume
public void setVolume(float volume)

Set the volume of the manager. Any subsequent music will be played at this volume, range zero
(quiet) to 1 (loudest).

Parameters:

volume - the new volume of the music, between 0 and 1.

setEnabled
public void setEnabled(boolean enabled)

Set whether the music is enabled or not. If disabled, music does not play.

Parameters:

enabled - if true, the music is enabled

318

II3.1.43 PreferencesManager

Figure 65: PreferencesManager class diagram

 The PreferencesManager is responsible for handling the player's preferences. The

player's preferences persist throughout the application. That is, the are saved onto the hard drive

through the Preferences instance, which allow the user to keep the same settings, even upon

application quit. Note that the preferences are universal. That is, no matter which profile the user

selects, his preferences will remain the same. Thus, anything which should persist through

application quit, and that should be independent of the profile the user selects is considered a

preference.

public class PreferencesManager
extends java.lang.Object

Field Detail

PREFS_NAME
private static final java.lang.String PREFS_NAME

The name of the Preferences instance saved on the device.

319

PREFS_MUSIC_VOLUME
private static final java.lang.String PREFS_MUSIC_VOLUME

The key for the music volume preference.

PREFS_SOUND_VOLUME
private static final java.lang.String PREFS_SOUND_VOLUME

The key for the SFX volume preference.

PREFS_PROFILES_SAVED
private static final java.lang.String PREFS_PROFILES_SAVED

The key for the amount of profiles saved by the player.

PREFS_LAST_PROFILE
private static final java.lang.String PREFS_LAST_PROFILE

The key for the preference containing the last profile loaded by the player.

preferences
private com.badlogic.gdx.Preferences preferences

Stores the Preferences instance used to save and retrieve player save information.

Constructor Detail

PreferencesManager
public PreferencesManager()

Creates a default PreferencesManager.

Method Detail

getPrefs
private com.badlogic.gdx.Preferences getPrefs()

Returns the Preferences instance used to modify and access the player's preferences.

getAmountProfiles

320

public int getAmountProfiles()

Returns the amount of profiles that the user has saved on the hard drive.

setAmountProfiles
public void setAmountProfiles(int numProfiles)

Sets the amount of profiles that have been saved by the player on the hard drive.

getLastProfile
public int getLastProfile()

Returns the profileId of the last profile used by the player.

setLastProfile
public void setLastProfile(int profileId)

Saves the profileId of the last profile loaded by the player.

newProfileCreated
public void newProfileCreated(int profileId)

Called when a new profile is created. Allows the PreferencesManager to update the amount of
profiles saved by the player. Also allows the manager to record this profile as the last profile the
user has loaded so that the user can continue from this profile the next time the game is loaded.

Parameters:

profileId - The ID of the profile that has been created

profileLoaded
public void profileLoaded(int profileId)

Called when a profile is loaded. Accepts the id of the loaded profile. The given profile will be
loaded the next time the user presses "Continue".

Parameters:

profileId - the profile id of the loaded profile

profileDeleted

public void profileDeleted(int profileId)

321

Called when a profile is deleted. Decrements the amount of saved profiles by one to ensure that
the manager keeps track of the amount of profiles the user has saved.

Parameters:

profileId - The ID of the profile that was deleted. If this profile is the one that is
supposed to be loaded when "Continue" is pressed, the PreferencesManager changes
the profile that will be loaded when "Continue" is pressed.

savePreferences
public void savePreferences()

Saves the preferences to the hard drive.

II.3.1.44 ProfileManager

Figure 66 : ProfileManager class diagram

 The ProfileManager is used to manage all of the player's profiles. It loads the profiles

from the hard drive and stores them in an array.

 The first variable in the class is a constant named FILE_PATH. It simply holds the file

322

path where the profiles are saved to the hard drive. Next, the maxProfiles integer holds the

maximum amount of profiles the user can have. Additionally, the profiles array holds a reference

to every profile that has been created by the user. Conversely, what the currentProfile variable

does is hold a reference to the profile that is currently being used by the player. It is the profile

that the user selected in the World Select Menu.

 In terms of constructors, the ProfileManager only has one constructor, which accepts the

maximum amount of profiles the user can have. The constructor then calls loadProfiles(), which

reads all of the profiles saved on the hard drive, and converts them into Profile objects. These

objects are then stored inside the profiles array.

 Next, the class has a getProfile(index:int):Profile method. It accepts the index for the

profile that will be returned by the method. Conversely, the createProfile(int) method creates a

new Profile object, saves it in the hard drive, and stores it inside the profiles array in the index

passed as an argument. The role of the saveProfile(Profile) method is to convert a profile object

into a string, and save it into a file of JSON type. Similarly, the saveCurrentProfile() does the

same thing, except it does not accept any parameters, and instead saves the player's current

profile to the hard drive.

 The deleteProfile(index:int) and the deleteAllProfiles() methods are self-explanatory. The

former deletes the Profile stored in the given index in the profiles array, and the latter deletes all

of the player's profiles, including the JSON files saved on the hard drive.

public class ProfileManager
extends java.lang.Object

Field Detail

FILE_PATH
private static final java.lang.String FILE_PATH

Stores the local file path for the profiles. Note that it ends with an underscore as it will be
proceeded by "[id].json"

numProfiles
private int numProfiles

323

Stores the amount of profiles created by the player in order to determine how many should be
loaded from the hard drive.

profiles
private com.badlogic.gdx.utils.Array<Profile> profiles

Stores an array of every profile that has been read by the ProfileManager to avoid re-reading
JSON files. Note that the index into the profiles array for a given profile is the same as to the
profile's id.

currentProfile
private Profile currentProfile

Stores the current profile being used by the user.

Constructor Detail

ProfileManager
public ProfileManager(int numProfiles)

Creates a profile manager, specifying the maximum amount of profiles the user can hold.

Parameters:

numProfiles - Specifies how many profiles the manager will retrieve from the hard
drive. Should correspond to amount of profiles the user has saved.

Method Detail

loadProfiles
public void loadProfiles()

Loads the profiles existing in the hard drive and populates the profiles:Profile[] array.

loadProfile
public Profile loadProfile(int profileId)

Loads the profile with the given ID from the hard drive and returns it.

Parameters:

324

profileId - the id of the profile to load

Returns:

the profile loaded from the hard drive

getCurrentProfile
public Profile getCurrentProfile()

Returns the current profile being used by the user. The current profile is the last one that was
retrieved from getProfile(profileId):Profile. By default, if that method was never called, the last
profile will be retrieved.

getProfile
public Profile getProfile(int profileId)

Gets the profile with the given id, ranging from 0 to MAX_PROFILES-1. If the profile doesn't
exist, it is not created nor saved to the hard drive.

Parameters:

profileId - the profile id of the profile that needs to be retrieved

Returns:

the profile with the given id

getProfile
public Profile getProfile(int profileId, boolean createNew)

Gets the profile with the given id, ranging from 0 to MAX_PROFILES-1. Should be called after
loadProfiles() to ensure that profiles have been loaded from the hard drive.

Parameters:

profileId - The id of the profile, ranging from 0 to ProfileManager.MAX_PROFILES-1.

createNew - If true, a new profile will be created if it doesn't exist on the hard drive.

Returns:

The profile with the given ID

createProfile

325

public Profile createProfile(int profileId)

Creates a profile with the given profile ID, and saves it to the hard drive. Also sets the created
profile to be the current user profile.

Parameters:

profileId - the profile id of the profile to create

Returns:

a new profile with with the given ID

saveProfile
public void saveProfile(Profile profile)

Saves the profile to the hard drive. The file name depends on the ID of the profile passed as a
parameter.

Parameters:

profile - the profile to save to the hard drive

saveCurrentProfile
public void saveCurrentProfile()

Saves the current profile to the hard drive as a JSON file.

deleteProfile
public void deleteProfile(int profileId)

Deletes a profile with the given ID from the hard drive.

Parameters:

profileId - the profile id of the profile to delete from the hard drive and RAM

shiftProfiles
private void shiftProfiles(int profileId)

Shifts all the saved profiles from indices [profileId+1,numProfiles] to indices
[profileId,numProfiles-1]. Called when the profile with the given id is deleted to ensure that the
empty spot from the deleted profile is filled.

326

Parameters:

profileId - the profile id to which all the other profiles are shifted to

unloadProfiles
public void unloadProfiles()

Unloads all of the profiles loaded by the ProfileManager. The player will lose any changes made
to his current profile. This method essentially clears every Profile reference stored in the
ProfileManager. Note that other classes can still hold references to the profiles. Therefore, pay
attention to how those those references are used once this method is called.

deleteAllProfiles
public void deleteAllProfiles()

Deletes all profiles from the hard drive, if they exist.

isEmpty
public boolean isEmpty()

Returns true if the ProfileManager does not have any loaded profiles.

getNumProfiles
public int getNumProfiles()

Gets the number of profiles the user has saved on the hard drive.

II.3.1.45 Settings

 The Settings class is used as a convenience class in order to save player data. First, the

Settings holds the profile which it wants to save to the hard drive. Next, it holds the

profileManager, used to save a profile to the hard drive. Finally, it holds the world instance. This

is needed in order to read player information and save it to the Profile instance.

 The default constructor creates a new Settings instance with null member variables. The

second constructor accepts the ProfileManager from which it will save profiles to the hard drive.

Next, the biggest constructor also accepts a ProfileManager, along with the Profile instance

327

inside which to save player information, and a World instance, from which player data is

extracted.

Figure 67 : Settings class diagram

 The Settings class also has the save() method. When called inside the GameScreen, the

Profile in the class's member variable is taken. Then, this profile's member variables are updated

to hold the player's new information. Then, the profileManager is used to save the profile to the

hard drive. The rest of the methods are simple getters and setters.

public class Settings
extends java.lang.Object

Field Detail

profile
private Profile profile

Stores the profile where data will be saved.

profileManager
private ProfileManager profileManager

Used to save the profile held by the Settings instance.

328

world
private World world

Stores the world from which we retrieve player data to save.

Constructor Detail

Settings
public Settings()

Creates an empty settings instance

Settings
public Settings(ProfileManager profileManager)

Creates a Settings instance which uses the given ProfileManager to save the player profile.

Settings
public Settings(Profile profile, ProfileManager profileManager,
 World world)

Accepts the profile to save, the ProfileManager used to save the profile, and world from which
player data is retrieved.

Parameters:

profile - The Profile instance which is saved to the hard drive by this Settings
instance

profileManager - The ProfileManager used to save the profile

world - The World instance, whose information is used to update the profile according
to the changes in the world.

Method Detail

save
public void save()

Saves player information to the profile registered to this instance.

saveLastXPos

329

private void saveLastXPos()

Saves the last x-position of the player before saving the profile. Note that this position is relative
to the layer where he currently resides.

getProfile
public Profile getProfile()

Retrieves the profile where the Settings instance saves player data.

setProfile
public void setProfile(Profile profile)

Sets the profile where player data will be saved.

getProfileManager
public ProfileManager getProfileManager()

Gets the ProfileManager used to save the profile to the hard drive.

setProfileManager
public void setProfileManager(ProfileManager profileManager)

Sets the ProfileManager used to save the profile to the hard drive.

getWorld
public World getWorld()

Gets the World where player information is read and saved to the hard drive.

setWorld
public void setWorld(World world)

Gets the World where player information is read and saved to the hard drive.

330

II.3.1.46 GameObjectManager

Figure 68 : GameObjectManager class diagram

 The GameObjectManager manages the instantiation and pooling of GameObjects in the

game. For instance, if ever a tree needs to be placed in the world, this manager will be used to

retrieve or instantiate a Tree object.

 In terms of data fields, the GameObjectManager has a player variable, which holds the

Player instance that the user controls. Next, the class has a poolMap. This HashMap has a Class

as a key and a Pool instance as a value. The key will always be a GameObject subclass. Thus,

each GameObject subclass has a pool where its objects are stored. For instance, the Tree.class

key has a TreePool value. A Pool subclass allows objects to be stored inside an array when they

are not needed, and retrieved when they are needed. When an object is no longer in use, it can be

freed back into the pool for later re-use. This way, every TerrainLayer recycles and re-uses the

same GameObject instances. This prevents the program from instantiating GameObjects often.

 On a different note, the constructor of the class simply accepts a Profile instance. From

this profile, the player will be created using the createPlayer(Profile) method. This method will

create an instance of Player from the save data stored inside the profile. Ignoring the getters and

setters for the player, the spawnItemObject(Class, float, float, Direction):ItemObject method first

accepts a Class. This class has to be an Item subclass. The method will then retrieve an

ItemObject from the poolMap, and spawn it in the position denoted by the second and third

331

parameters. Note that the Direction parameter accepts either Direction.LEFT or

Direction.RIGHT. This is the direction where the item will fly when spawned. The item is

spawned using ItemObject.spawn(…).

 Alternatively, the spawnZombie(x:float, y:float):Zombie first retrieves a Zombie instance

from the poolMap. Then, the zombie is placed at the (x,y) position given by the parameters of the

method and returns this zombie instance.

 The most important methods of the class are the getGameObject(Class<T>):T method

and the freeGameObject(GameObject,Class) method. The former accepts a Class. A

GameObject of class T is returned. For instance, if

GameObjectManager.getGameObject(Tree.class) is called, a pooled Tree object is returned.

This method allows classes to easily access pooled GameObjects of any class. Conversely, the

freeGameObject(GameObject, Class) performs the reverse operation of the getGameObject(…)

method. It inserts the GameObject parameter in the poolMap.get(Class) pool. Like this, when

GameObjects are no longer needed, if, for instance, a zombie is killed, it can be freed back into

the ZombiePool to be recycled.

public class GameObjectManager
extends java.lang.Object

Field Detail

player
private Player player

Stores the player GameObject.

poolMap
private java.util.HashMap<java.lang.Class,com.badlogic.gdx.utils.Pool>
poolMap

Stores HashMap of GameObjectPools where every GameObject class is a key to a pool of its
GameObjects. Used for easy management of pools.

assets
Assets assets

332

Stores the Assets singleton used to access the visual assets used by the game.

Constructor Detail

GameObjectManager
public GameObjectManager(Profile profile)

Accepts the player's profile to re-create some GameObjects using save data.

Method Detail

createPlayer
private void createPlayer(Profile profile)

Creates the player GameObject, along with his skeleton. Accepts profile to re-create the player
with his old settings.

getPlayer
public Player getPlayer()

Returns the Player GameObject being managed by the manager.

spawnItemObject
public ItemObject spawnItemObject(float x, float y,
 float velocityMultiplier,Human.Direction direction)

Spawns an ItemObject at the given position. The (x,y) position is the bottom-center of the
position where the ItemObject is spawned.

Parameters:

velocityMultiplier - Multiplier which allows certain items to fly further or closer
when spawned.

direction - Specifies the direction in which the item will fly when spawned.

spawnEarthquake
public Earthquake spawnEarthquake(float x, float y,
 Human.Direction direction)

Spawns an Earthquake instance at the given bottom-center (x,y) position. The earthquake will
move in the given direction passed as an argument.

333

getGameObject
public <T> T getGameObject(java.lang.Class<T> goClass)

Gets a tree GameObject of the given class cached inside one of the Manager's pools. No same
GameObject will be returned twice until it is freed using freeGameObject().

Type Parameters:

T - The type of GameObject that wants to be retrieved.

Returns:

A GameObject of the given class

freeGameObject
public <T> void freeGameObject(GameObject gameObject,
 java.lang.Class<T> goClass)

Frees a gameObject back inside the manager's internal GameObject pools. Tells the manager
that the GameObject is no longer in use, and that the it can be returned when getGameObject()
is called.

II.3.1.47 Cell

 The Cell class represents a pair of cell coordinates. It holds a row and a column. The

default constructor instantiates a cell at row and column zero. The second constructor accepts the

row and column of the Cell as parameters.

 The class also has the moveLeft/Right/Up/Down(). This shifts the cell left, right, up, and

down, respectively. For instance, if the Cell holds coordinates (3,0), and moveUp() is called, the

cell coordinates are changed to (4,0). The set(row:int, col:int) method changes the row and

column of the cell. The rest of the methods are simple getters and setters.

(See next page for class diagram)

334

Figure 69 : Cell class diagram

public class Cell
extends java.lang.Object

Field Detail

row
private int row

Stores the row and column of the cell.

col
private int col

Stores the row and column of the cell.

Constructor Detail

Cell
public Cell()

Creates a cell at (0,0)

Cell

335

public Cell(int row,int col)

Creates a cell with the specified row and column.

Parameters:

row - the row of the cell

col - the col of the cell

Method Detail

moveLeft
public void moveLeft()

Moves the cell left by decrementing the column

moveRight
public void moveRight()

Moves the cell right by incrementing the column

moveUp
public void moveUp()

Moves the cell up by incrementing the row

moveDown
public void moveDown()

Moves the cell down by decrementing the row

set
public void set(int row,int col)

Sets the row and the column of the cell to the specified values.

getRow
public int getRow()

Retrieves the cell's row

336

setRow
public void setRow(int row)

Sets the cell's row

getCol
public int getCol()

Returns the cell's column

setCol
public void setCol(int col)

Sets the cell's column

II.3.1.48 Line

Figure 70: Line class diagram

337

 A Line object simply represents a line going from one end-point to the other. It is used

when the player is firing his ranged weapon. In fact, at this moment, a line object is used to

model the trajectory line of the gun. It allows the user to know where his gun will fire.

public class Line
extends java.lang.Object

Field Detail

x1
private float x1

End-point of the line.

y1
private float y1

End-point of the line.

x2
private float x2

End-point of the line.

y2
private float y2

End-point of the line.

Constructor Detail

Line
public Line()

Creates a line with both end points at (0,0).

Line
public Line(float x1, float y1, float x2, float y2)

Creates a line with the given end-points.

338

Method Detail

set
public void set(float x1, float y1, float x2, float y2)

Changes the two end-points of the line.

intersects
public boolean intersects(Collider collider)

Returns true if the line intersects with a given collider.

Parameters:

collider - the collider which is tested to intersect the line

Returns:

true, if the line intersects the collider.

getX1
public float getX1()

Returns the x-position of the first end-point of the line.

setX1
public void setX1(float x1)

Sets the x-position of the first end-point of the line.

getY1
public float getY1()

Returns the y-position of the first end-point of the line.

setY1
public void setY1(float y1)

Sets the y-position of the first end-point of the line.

getX2

339

public float getX2()

Returns the x-position of the second end-point of the line.

setX2
public void setX2(float x2)

Sets the x-position of the second end-point of the line.

getY2
public float getY2()

Returns the y-position of the second end-point of the line.

setY2
public void setY2(float y2)

Sets the y-position of the second end-point of the line.

II.3.1.49 Item

Figure 71 : Item class diagram

 The Item class is a data holder for each item in the world. Whereas an ItemObject

represents a physical entity, an Item is used to provide information on a specific item.

340

 First, each item has a name. This is the name displayed for each item inside the Crafting

Menu. Next, an item has an inventorySprite. This is an image which is used to represent the item

inside the Crafting Menu. Finally, an item has an itemAttachment String. This String denotes the

name of the attachment inside Spine used to display the item. An ItemObject needs this

attachment name to represent the item as a physical object in the world. In fact, the attachment

tells the ItemObject which image to display, since an attachment is essentially an image inside

Spine. Note that the subclasses do not accept this String as an argument to keep the constructor’s

parameters easy to follow. The String, however, may be modified using its setter method.

public abstract class Item
extends java.lang.Object

Field Detail

SLOT_NAME
public static final java.lang.String SLOT_NAME

Holds the name of the slot where the item's image is attached for the Item skeleton in Spine.
Allows to change an ItemObject's appearance.

name
private java.lang.String name

Stores the name of the item.

description
private java.lang.String description

Holds the description of the item.

itemAttachment
private java.lang.String itemAttachment

Stores the name of the image which displays the item's image in Spine. This is the image that
will be displayed on the ItemObject containing this item.

Constructor Detail

Item

341

public Item(java.lang.String name,java.lang.String description)

Creates an item with the given name and description.

Parameters:

name - the name if the item

description - the description of the item.

Method Detail

getName
public java.lang.String getName()

Gets the item's name.

setName
public void setName(java.lang.String name)

Sets the item's name.

getDescription
public java.lang.String getDescription()

Gets the item's description.

setDescription
public void setDescription(java.lang.String description)

Sets the item's description.

getItemAttachment
public java.lang.String getItemAttachment()

Retrieves the name of the attachment used in Spine to display this Item when it is an object in
the world.

setItemAttachment

public void setItemAttachment(java.lang.String itemAttachment)

342

Sets the name of the attachment used in Spine to display this Item when it is an object in the
world.

II.3.1.50 Weapon

Figure 72 : Weapon class diagram

 The abstract Weapon represents a weapon as both a physical entity in the world and as an

item in the player's inventory.

 First, a Weapon has a damage variable. This represents the amount of health points an

entity loses when hit by the weapon. Next, the weapon has an attachment, which denotes the

name of the image used to display the weapon when it is equipped by the player. In subclasses,

the weaponAttachment data field is not populated by a constructor argument. In order to prevent

the constructor from bloating with an excess of arguments, the weaponAttachment is changed

using the data field’s mutator.

public class Weapon
extends Item

Field Detail

damage

protected float damage

343

The amount of damage done by the weapon with one hit.

weaponSlotName
private java.lang.String weaponSlotName

Stores the slot in Spine where the image of the gun is attached.

weaponAttachment
private java.lang.String weaponAttachment

Stores the name of the attachment image used to display the weapon.

Constructor Detail

Weapon
public Weapon(java.lang.String name, java.lang.String description,
 float damage)

Creates a weapon with the given name, description, and damage.

Parameters:

name - the name of the weapon

description - the description of the weapon

damage - the damage dealt by the weapon

Method Detail

getDamage
public float getDamage()

Gets the amount of damage the weapon deals in one hit.

setDamage
public void setDamage(float damage)

Sets the amount of damage the weapon deals in one hit.

getSlotName

public java.lang.String getSlotName()

344

Returns the slot name on the player in Spine where the weapon's image is attached.

setWeaponSlotName
public void setWeaponSlotName(java.lang.String slotName)

Sets the slot name on the player in Spine where the weapon's image is attached.

getWeaponAttachment
public java.lang.String getWeaponAttachment()

Gets the name of the image (attachment) in Spine which displays the weapon.

setWeaponAttachment
public void setWeaponAttachment(java.lang.String attachmentName)

Sets the name of the image (attachment) used in Spine to display the weapon.

II.3.1.51 RangedWeapon

Figure 73 : RangedWeapon class diagram

 A RangedWeapon acts as a superclass for every ranged weapon in the game.

public abstract class RangedWeapon

345

extends Weapon

Field Detail

WEAPON_SLOT_NAME
public static final java.lang.String WEAPON_SLOT_NAME

Stores the name of the slot on the player in Spine where ranged weapon images are stored.

crosshair
private final Line crosshair

Holds a line which traces the trajectory of the gun's bullet. In essence, this is location where a
zombie can get hit by the weapon.

crosshairPoint
private final Vector2 crosshairPoint

Stores the position where the gun's crosshair should be placed. This is where the trajectory
lines starts.

range
private float range

Stores the range of the gun, which is the distance in world units that the gun's bullet can travel.

chargeTime
private float chargeTime

Holds the amount of time it takes to charge the weapon completely.

Constructor Detail

RangedWeapon
public RangedWeapon(java.lang.String name,
 java.lang.String description, float damage,
 float range, float chargeTime)

Accepts the name, description, damage, and charge time of the melee weapon.

346

Parameters:

name - the name of the RangedWeapon

description - the description of the RangedWeapon

damage - the damage of the RangedWeapon

range - the range of the RangedWeapon

chargeTime - the charge time of the RangedWeapon

Method Detail

hit
public void hit(GameObject gameObject)

Called when the RangedWeapon has hit a GameObject and should deal damage to it.

Parameters:

gameObject - the game object to hit

getCrosshair
public Line getCrosshair()

Returns a line depicting where the bullet will travel when the ranged weapon is shot.

getCrosshairPoint
public Vector2 getCrosshairPoint()

Returns the position where the start of the crosshair should be placed on the weapon. This is
usually the tip of the ranged weapon.

getRange
public float getRange()

Gets the range of the ranged weapon in world units. This is the distance that a bullet can travel
relative to the tip of the weapon.

setRange

public void setRange(float range)

347

Sets the range of the ranged weapon in world units. This is the distance that a bullet can travel
relative to the tip of the weapon.

getChargeTime
public float getChargeTime()

Gets the amount of time it takes to charge the weapon.

setChargeTime
public void setChargeTime(float chargeTime)

Gets the amount of time it takes to charge the weapon completely.

II.3.1.52 MeleeWeapon

Figure 74 : Visual representation of the MeleeWeapon class

 On the other hand, the MeleeWeapon class acts as a superclass for all melee weapons. Its

primary role is to allow other classes to distinguish between a melee and a ranged weapon just by

the weapon’s supertype.

 The main difference between the ranged and the melee weapon is that melee weapons

have a reach. This data field is a floating-point value which denotes a distance in meters. It

determine how far from the player the weapon can attack. The ranged weapon, on the other hand,

348

does not have a range as these weapons always have infinite reach.

public abstract class MeleeWeapon
extends Weapon

Field Detail

reach
private float reach

Stores the horizontal reach of the melee weapon in world units.

collider
private Rectangle collider

Holds the rectangle collider put around the melee weapon when it is equipped. Allows to test for
hit detection.

WEAPON_SLOT_NAME
public static final java.lang.String WEAPON_SLOT_NAME

Stores the name of the slot on the player in Spine where melee weapon images are stored.

Constructor Detail

MeleeWeapon
public MeleeWeapon(java.lang.String name,
 java.lang.String description, float damage,float reach)

Accepts the name, description, damage, and range of the melee weapon.

Parameters:

name - the name of the MeleeWeapon

description - the description of the MeleeWeapon

damage - the damage of the MeleeWeapon

reach - the reach of the MeleeWeapon

Method Detail

349

getReach
public float getReach()

Gets the horizontal reach in world units of the melee weapon.

setReach
public void setReach(float range)

Sets the horizontal reach in world units of the melee weapon.

hit
public void hit(GameObject gameObject)

Called when the MeleeWeapon has hit a GameObject and should deal damage to it.

Parameters:

gameObject - the game object to hit

hitTree
public abstract void hitTree(Tree tree)

Called when the MeleeWeapon has hit a tree and should deal damage to it.

Parameters:

tree - the tree to hit

getCollider
public Rectangle getCollider()

Returns the collider around the melee weapon used to detect when the weapon hits an enemy.

setCollider
public void setCollider(Rectangle collider)

Sets the collider around the melee weapon used to detect when the weapon hits an enemy.

350

II.3.1.53 Axe & Rifle

Figure 75 : Axe and Rifle class diagrams

 The Axe and the Rifle classes represent the two weapons available in the world. Their

constructors don’t accept any arguments, as every instance of these classes have the same data

fields. Thus, the constructors simply populate their member variables with the appropriate

values.

public class Axe
extends MeleeWeapon

Field Detail

NAME
public static final java.lang.String NAME

The name of the axe.

DESCRIPTION
public static final java.lang.String DESCRIPTION

The description of the axe.

DAMAGE
public static final float DAMAGE

The damage inflicted by the axe.

351

REACH
public static final float REACH

The horizontal range of the axe.

WEAPON_ATTACHMENT_NAME
public static final java.lang.String WEAPON_ATTACHMENT_NAME

Stores the name of the image placed on the player in Spine which displays the Axe.

Constructor Detail

Axe
public Axe()

Creates an axe.

Method Detail

hitTree
public void hitTree(Tree tree)

Called when the MeleeWeapon has hit a tree and should deal damage to it.

Specified by:

hitTree in class MeleeWeapon

Parameters:

tree - the tree to hit

public class Rifle
extends RangedWeapon

Field Detail

NAME

public static final java.lang.String NAME

352

Stores the properties of the rifle.

DESCRIPTION
public static final java.lang.String DESCRIPTION

Stores the description of the rifle.

DAMAGE
public static final float DAMAGE

The damage of the rifle.

RANGE
public static final float RANGE

The length of the crosshair of the rifle.

CHARGE_TIME
public static final float CHARGE_TIME

The amount of time the rifle takes to charge.

WEAPON_ATTACHMENT_NAME
public static final java.lang.String WEAPON_ATTACHMENT_NAME

Stores the name of the image placed on the player in Spine which displays the rifle.

Constructor Detail

Rifle
public Rifle()

Creates a rifle.

353

II.3.1.53 Craftable

Figure 76 : Craftable class diagram

 The abstract Craftable class simply denotes any items that are not weapons. Its

constructor accepts the name of the item along with the Sprite which is used to display the item

in the Crafting Menu.

public abstract class Craftable
extends Item

Constructor Detail

Craftable
public Craftable(java.lang.String name, java.lang.String description)

Instantiates a new craftable item.

Parameters:

name - the name of the craftable item

description - the description of the craftable item

(See next page for Craftable subclasses)

354

II.3.1.55 Craftable subclasses

Figure 77 : Wood, Sulfur, Iron, Saltpeter, Gunpowder, Bullet, Teleporter and Charcoal class diagrams

 Above are the Craftable subclasses which act as data containers for every craftable item

in the world. They simply contain no-arg constructors which populates the class’s data fields.

Given that the classes only contain constants used to define each item's data, a single sample is

given to describe the data fields and methods of the items.

355

public class Teleporter
extends Craftable

Field Detail

NAME
private static final java.lang.String NAME

The name of the teleporter item.

DESCRIPTION
private static final java.lang.String DESCRIPTION

The description of the teleporter item.

ITEM_ATTACHMENT_NAME
private static final java.lang.String ITEM_ATTACHMENT_NAME

Stores the name of the image placed on the ItemObject skeleton in Spine which displays the
Teleporter.

Constructor Detail

Teleporter
public Teleporter()

Creates a Teleporter item that can be displayed in an inventory slot.

(See next page for Inventory class)

356

II.3.1.56 Inventory

Figure 78 : Inventory class diagram

 The Inventory acts as a container for all of the items which the player possesses. It holds

all of the player's items through a HashMap called itemMap. Its key is the item's class, and the

integer is the quantity of this item stored inside the inventory. The default constructor of the class

simply creates an Inventory with a null itemMap. The Profile used by the player takes the saved

itemMap, and passes it to the Inventory using the itemMap's setter method. The only notable

method in the class is the addItem(Class, int) method, which accepts a class which is usually an

Item subclass. It also accepts the quantity to put inside the inventory for that specific item.

public class Inventory
extends java.lang.Object

Field Detail

itemMap
private java.util.HashMap<java.lang.Class,java.lang.Integer> itemMap

Holds a map between an Item class and the amount of items of that class inside the inventory.

Constructor Detail

Inventory
public Inventory()

Creates an empty inventory.

357

Method Detail

addItem
public <T extends Item> void addItem(java.lang.Class<T> itemClass,
 int quantity)

Adds the Item of the given class inside the Inventory in the given quantity.

Type Parameters:

T - the generic type

Parameters:

itemClass - the item to add to the inventory

quantity - the quantity of that item to add to the inventory

getQuantity
public int getQuantity(java.lang.Class itemClass)

Returns the quantity of items of the given class inside the inventory.

Parameters:

itemClass - the item whose quantity is returned

Returns:

the quantity of the given item held in the inventory.

clear
public void clear()

Clears all of the items stored in the inventory.

getItemMap
public java.util.HashMap<java.lang.Class,java.lang.Integer> getItemMap
()

Returns the ItemMap which maps the Item classes to the amount of the item stored inside the
inventory.

358

setItemMap
public void setItemMap(java.util.HashMap<java.lang.Class,java.lang.Int
eger> itemMap)

Sets the ItemMap which maps the Item classes to the amount of the item stored inside the
inventory.

II.3.1.57 Loadout

Figure 79 : Loadout class diagram

 The Loadout is a simple class. It simply acts as a container for the player's currently

equipped weapons. The Loadout has a meleeWeapon and a rangedWeapon member variable,

which respectively hold the melee weapon held by the user, along with the range weapon

equipped by the player. The default constructor instantiates an empty loadout without any

weapons.

public class Loadout
extends java.lang.Object

Field Detail

meleeWeapon
private MeleeWeapon meleeWeapon

Stores the MeleeWeapon held in the loadout.

359

rangedWeapon
private RangedWeapon rangedWeapon

Holds the RangedWeapon equipped by the player.

Constructor Detail

Loadout
public Loadout()

Creates an empty loadout with nothing inside it.

Method Detail

getMeleeWeapon
public MeleeWeapon getMeleeWeapon()

Gets the MeleeWeapon held in the loadout.

setMeleeWeapon
public void setMeleeWeapon(MeleeWeapon meleeWeapon)

Sets the MeleeWeapon held in the loadout.

getRangedWeapon
public RangedWeapon getRangedWeapon()

Returns the RangedWeapon equipped by the player.

setRangedWeapon
public void setRangedWeapon(RangedWeapon rangedWeapon)

Sets the RangedWeapon equipped by the player.

clear
public void clear()

Clears all of the weapons held by the player.

360

II.3.1.58 Pool Classes

Figure 80 : BoxPool, TreePool, ZombiePool and ItemObjectPool class diagrams

 The pool classes all extend LibGDX's pre-defined Pool class. What these pools do is hold

a dynamic array of objects. Every time an object from that pool wants to be retrieved, the

Pool.obtain():T method is called. This method can do one of two things. For one, if the pool has

no free objects, it calls the newObject():T method, which instantiates a new object and returns it.

If, however, the pool already has a free object inside its internal array, it returns it. In order to

return an object inside the pool, the Pool.free(T) must be called, where T is the object type which

the pool stores in its internal array. To use extend the Pool class, all that is needed is to override

the newObject():T method to instantiate a new object of the type T and return it.

 Note that pools were used as they heavily aid the game's performance. Instead of

constantly instantiating and garbage collecting objects, objects are only created once, and re-used

whenever they are needed. Note that the Tree, Box, Zombie, and ItemObject classes were pooled

as they are constantly being reused and recycled as the player traverses across the world.

 Given that the contents of each class is nearly identical, a single sample is given to

describe the BoxPool's data fields and methods.

class BoxPool
extends com.badlogic.gdx.utils.Pool

361

Constructor Detail

BoxPool

BoxPool()

Method Detail

newObject
public Box newObject()

Called when no free objects are available in the pool, and a new one must be created.

Specified by:

newObject in class com.badlogic.gdx.utils.Pool

Returns:

a new Box instance, placed at (0,0)

(See next page for TiledImage class)

362

II.3.1.59 TiledImage

Figure 81: TiledImage class diagram

 The TiledImage class allows multiple images to be grouped together in a grid. This is

used for the main menu screens, where the backgrounds were too large to fit into one image.

Thus, the backgrounds were split into two images, and grouped together with a TiledImage

instance.

public class TiledImage
extends java.lang.Object

Field Detail

images
private com.badlogic.gdx.utils.Array<com.badlogic.gdx.scenes.scene2d.u
i.Image> images

Stores the images which form the TileImage.

rows

private int rows

363

Stores the number of rows of images in the TimeImage.

cols
private int cols

Holds the number of columns in which the images are laid out in the TileImage.

width
private float width

Stores the total width of the TiledImage.

height
private float height

Stores the total height of the TiledImage.

Constructor Detail

TiledImage
public TiledImage(com.badlogic.gdx.graphics.g2d.TextureRegion... regio
ns)

Creates a TiledImage which will have its images laid out in rows and columns.

Parameters:

regions - The TextureRegions which will compose the TiledImage.

Method Detail

add
public void add(com.badlogic.gdx.graphics.g2d.TextureRegion region)

Adds an image to the TiledImage. Note that the image is added in the next column, after the
image which was last added to the TiledImage.

Parameters:

region - the image to add to the TiledImage

364

row
public void row()

Skip a row.

setPosition
public void setPosition(float x, float y)

Sets the bottom-left position of the TiledImage at the given (x,y) coordinates.

Parameters:

x - the left x-position of the TiledImage

y - the bottom y-position of the TiledImage

positionImages
private void positionImages()

Re-positions the images so that they are in a grid-like fashion, with the same amount of rows
and columns specified in the member variables.

addToStage
public void addToStage(com.badlogic.gdx.scenes.scene2d.Stage stage)

Adds the TiledImage to the stage, so that it can be rendered.

Parameters:

stage - the stage which will render the TiledImage

getWidth
public float getWidth()

Retrieves the total width of the TiledImage.

setWidth
public void setWidth(float width)

Sets the total width of the TiledImage.

getHeight

365

public float getHeight()

Retrieves the total height of the TiledImage.

setHeight
public void setHeight(float height)

Sets the total height of the TiledImage.

II.3.1.60 KoAnimation and VersusAnimation classes

Figure 82: VersusAnimation and KoAnimation class diagrams

 The VersusAnimation is played whenever the user enters combat with a zombie. It pauses

the game, and allows the user to see that he has entered combat with a zombie. Conversely, the

KoAnimation plays whenever the user wins or loses combat. It signals to the player that combat

is over. Note that, since the two classes are almost identical, the data field, constructor and

method details are only specified for the KoAnimation class.

public class KoAnimation
extends java.lang.Object

Field Detail

assets

protected Assets assets

366

Stores the Assets singleton of the game used to fetch assets to draw the Spine animations.

world
private World world

Stores the world whose enterCombat() method we call when the versus animation is finished.

batcher
private com.badlogic.gdx.graphics.g2d.SpriteBatch batcher

Stores the SpriteBatcher used to draw the animations.

worldCamera
private com.badlogic.gdx.graphics.OrthographicCamera worldCamera

Stores the OrthographicCamera used to view the world.

koSkeleton
private com.esotericsoftware.spine.Skeleton koSkeleton

Stores the Spine Skeleton used to show the KO animation when a character dies in COMBAT
mode.

playTime
private float playTime

Holds the amount of time in seconds that the animation has been playing.

events
private com.badlogic.gdx.utils.Array<com.esotericsoftware.spine.Event>
events

Constructor Detail

KoAnimation
public KoAnimation(World world,
 com.badlogic.gdx.graphics.g2d.SpriteBatch batcher,
 com.badlogic.gdx.graphics.OrthographicCamera worldCamera)

367

Accepts the SpriteBatch instance where Spine skeletons are drawn, and the camera used to
view the world, which allows the animations to be centered on the screen. Also accepts the
World, which this class will signal when the animation is done.

Parameters:

world - the world, whose methods are called when the KOAnimation is complete

batcher - the batcher used to draw the animation

worldCamera - the world camera where the animation is rendered

Method Detail

draw
public void draw(float deltaTime)

Draws the animation to the center of the screen.

Parameters:

deltaTime - the execution time of the previous render call

checkFinished
private void checkFinished()

Checks if the versus animation has finished playing. If so, the world's correct methods are
delegated to switch the player to combat mode.

(See next page for CrosshairRenderer class)

368

II.3.1.61 CrosshairRenderer

Figure 83: CrosshairRenderer class diagram

 The CrosshairRenderer is responsible for the ranged weapon's crosshair to the screen. In

fact, whenever the player is charging his rifle, this class calls its drawTrajectoryLine(Player)

method in order to draw two lines which form the rifle's crosshair.

public class CrosshairRenderer
extends java.lang.Object

Field Detail

DEFAULT_LINE_COLOR
private static final com.badlogic.gdx.graphics.Color
DEFAULT_LINE_COLOR

Stores the default color of the lines used to draw the crosshairs.

LINE_LENGTH
private static final float LINE_LENGTH

Holds the default length of a crosshair line/trajectory line.

MAX_ANGLE
private static final float MAX_ANGLE

Stores the max angle of the trajectory line when the player's ranged weapon has just begun
charging.

369

world
private World world

Stores the world whose information we use to render crosshairs.

worldCamera
private com.badlogic.gdx.graphics.OrthographicCamera worldCamera

Stores the camera where the terrain is drawn. In this case, the world camera.

shapeRenderer
private com.badlogic.gdx.graphics.glutils.ShapeRenderer shapeRenderer

Stores the ShapeRenderer instance used to draw the level geometry.

Constructor Detail

CrosshairRenderer
public CrosshairRenderer(World world,
 com.badlogic.gdx.graphics.OrthographicCamera worldCamera)

Accepts the world, from which information is gathered about the crosshairs to draw, and the
camera where the crosshair lines will be drawn.

Parameters:

world - The World instance from which the player and his ranged weapon's information
is extracted to draw the necessary crosshairs.

worldCamera - The camera where the crosshairs are drawn

Method Detail

render
public void render(float deltaTime)

Renders the given terrainLevel's geometry using OpenGL ES lines.

Parameters:

deltaTime - The amount of time passed in the last render call

370

drawTrajectoryLine
private void drawTrajectoryLine(Player player)

Draws the player's trajectory line on the tip of his gun.

Parameters:

player - The crosshair is drawn on the RangedWeapon held by the given player

371

II.3.2 Class Hierarchies

Important Notes:

1. To show the relationship between a class and its inner classes or its enumerations, a filled black

circle was placed at the tip of the lines instead of a plus sign. This was due to limitations

regarding the program used to generate the UML diagrams.

2. The details of enumerations are not explicitly explained in this section. Given that the

enumeration constants were often self-explanatory, their explanations were omitted for the sake

of brevity.

3. The method and data field explanations for inner classes and interfaces are given in this section.

This allows the details of inner classes to be closer to their hierarchies, more effectively

demonstrating the relationships between the inner classes and their main classes, and the

interfaces and the classes which implement them.

4. The inner classes which represented mere button listeners were not included in this document for

brevity's sake. There would be too many to list, and their implementation details would be trivial.

372

II.3.2.1 Human Hierarchy

Figure 84 : Human class hierarchy

373

II.3.2.2 Human Enumerations

Figure 85 : Enumerations related to the Human class

374

II.3.2.3 InteractiveObject Hierarchy & Enumerations

Figure 86 : Human class hierarchy and related enumerations

 Note: the Clickable marker interface denotes a GameObject, which, when clicked, will

call the World.gameObjectClicked() method.

375

II.3.2.4 ItemObject Hierarchy & Enumerations

Figure 87 : ItemObject class hierarchy and related enumerations

II.3.2.5 Collider Hierarchy

Figure 88 : Collider class hierarchy

376

II.3.2.6 World Hierarchy, Inner Classes, & Enumerations

Figure 89 : World hierarchy, Inner Classes, & related enumerations
Note: The method PlayerListener.scavengedObject(InteractiveObject) method is called

whenever the player has scavenged an object. The world receives this event, and reacts by

dropping items next to the InteractiveObject passed an argument to the method. Conversely, the

playKoAnimation() simply tells the World to start playing the KoAnimation when combat mode

comes to an end.

377

II.3.2.7 Screen Hierarchy

Figure 90 : Screen class hierarchy

378

II.3.2.8 GameScreen Enumerations & Inner Classes

Figure 91 : GameScreen related enumerations & inner classes

379

 Note: The details of the WorldListener and HudListener classes are given in this

section. As such, the explanations are closer to the class diagrams themselves, as explained in

the notes at the beginning of this section.

public interface WorldListener

Listens to events fired by the World and delegates them to the GameScreen.

Method Detail

onPlayAnimation
void onPlayAnimation()

Called when an animation plays which overlays the screen. In this case, the GameScreen will
pause the game until the animation is done.

pauseGui
void pauseGui()

Pauses the currently-active Heads-up-display so that no buttons can be pressed.

onAnimationComplete
void onAnimationComplete()

Called when an animation finishes playing. This is for overlay animations which fill the screen.
When complete, the GameScreen knows to resume the game.

switchToCombat
void switchToCombat()

Delegated when the player switches to combat mode. Tells the GameScreen to switch to the
combat HUD.

switchToExploration
void switchToExploration()

Delegated after the KO animation plays in COMBAT mode. Tells the GameScreen to switch the
HUD back to the Exploration HUD.

gameOver

380

void gameOver()

Tells the GameScreen to switch to its GameOverHud.

winGame
void winGame()

Called when the player's TELEPORT animation is done playing after crafting a teleporter.
Transitions the player back to the main menu.

 The HudListener is registered to each HUD instance. Whenever a button is pressed that

should notify the GameScreen, one of the listener's methods are called, and the GameScreen can

then handle the event by itself.

public interface HudListener

Method Detail

onBack
void onBack()

Called when the Back Button is pressed on any Hud instance

onBackpackButton
void onBackpackButton()

Called when the Backpack Button is pressed. This is the button on the top-left of the screen in
exploration mode.

onPauseButton
void onPauseButton()

Called when the Pause Button is pressed whilst in-game.

toggleInput
void toggleInput(boolean on)

Called when the user presses/releases a button on a HUD. Toggles input handling on/off.
Allows/disallows input from changing the player's state.

381

Parameters:

on - if true, input is toggled on

toggleGestures
void toggleGestures(boolean on)

Called when gesture processing should be switched on or off. If 'off', GestureManager stops
listening for gestures and the user can no longer control the player with gestures.

Parameters:

on - if true, gestures are toggled on

saveGame
void saveGame()

Delegates when the user presses the 'Save' button in the pause menu, and wants to save the
game in his current profile.

switchToMainMenu
void switchToMainMenu()

Called when the main menu button was pressed to transition to the main menu.

switchToSurvivalGuide
void switchToSurvivalGuide()

Called when the survival guide button is pressed in the backpack, in order to transition to the
survival guide hud.

switchToCraftingMenu
void switchToCraftingMenu()

Called when the crafting button is pressed in the backpack. Transitions to the crafting HUD.

activateTeleporter
void activateTeleporter()

Delegated by the CraftingHud when the player crafts a TimeMachine. Tells the GameScreen to
make the player win the game.

382

gameOverHudFinished
void gameOverHudFinished()

Called when the GameOverHud is finished displaying. Informs the GameScreen that the player
has died.

II.3.2.9 Hud Hierarchy (a)

(Note: Hierarchy split into two due to lack of space)

Figure 92 : Hud class hierarchy (a)

383

II.3.2.10 Hud Hierarchy (b)

Figure 93 : Hud class hierarchy (b)

II.3.2.11 CraftingTable inner class

Figure 94 : CraftingTable inner class

384

private class CraftingTable.ItemCell
extends java.lang.Object

A cell representing an item as a button in the crafting table.

Field Detail

itemClass
private java.lang.Class itemClass

Stores the Item subclass represented by this cell.

quantity
private int quantity

Holds the amount of items of the same type contained in the cell.

buttonStyle
private com.badlogic.gdx.scenes.scene2d.ui.ImageTextButton.ImageTextBu
ttonStyle buttonStyle

Holds the style which dictates the look of the button.

button
private com.badlogic.gdx.scenes.scene2d.ui.ImageTextButton button

Stores the button which displays the given item and its quantity in the crafting table.

itemImage
private com.badlogic.gdx.scenes.scene2d.ui.Image itemImage

Holds the image displaying the item on the cell.

itemBoxImage
com.badlogic.gdx.scenes.scene2d.ui.Image itemBoxImage

Stores the image displaying the grey box background to each button.

Constructor Detail

CraftingTable.ItemCell

385

public CraftingTable.ItemCell()

Creates a default ItemCell with no item inside.

Method Detail

addQuantity
public void addQuantity(int amount)

Adds the given amount of items to this cell. Can be negative

setItemDrawable
public void setItemDrawable(java.lang.Class itemClass)

Updates the button to display the image for the given class.

Parameters:

itemClass - the new item type to display

empty
public void empty()

Resets the ItemCell to an empty cell.

isEmpty
public boolean isEmpty()

Returns true if this cell is not filled with an item.

setItemClass
public void setItemClass(java.lang.Class itemClass)

Sets the item class held by the cell.

getItemClass
public java.lang.Class getItemClass()

Returns the item class held by the cell.

getButton

386

public com.badlogic.gdx.scenes.scene2d.ui.ImageTextButton getButton()

Returns the button which displays the item held by this cell.

II.3.2.12 Pool Hierarchy

Figure 95 : Pool class hierarchy
II.3.2.13 TerrainLayer Enumerations

Figure 96 : TerrainLayer related enumerations

387

II.3.2.14 Level Hierarchy

Figure 97 : Level class hierarchy
II.3.2.15 Weapon Hierarchy

Figure 98 : Weapon class hierarchy

388

II.3.2.16 Craftable Hierarchy (a)

(Note: Hierarchy split into two due to lack of space)

Figure 99 : Craftable class hierarchy (a)
II.3.2.17 Craftable Hierarchy (b)

Figure 100 : Craftable class hierarchy (b)

389

II.3.2.18 CraftingManager Inner Classes

Figure 101 : CraftingManager inner classes (b)

private class CraftingManager.Combination
extends java.lang.Object

Describes a combination of items which, together, craft an item.

Field Detail

result
private CraftingManager.Item result

Stores the item which results from the combination.

items

private com.badlogic.gdx.utils.Array<CraftingManager.Item> items

390

The array of items which must be combined to form the above the resulting item.

Constructor Detail

CraftingManager.Combination
public CraftingManager.Combination()

Creates a new, empty combination.

Method Detail

addItem
public void addItem(java.lang.Class item, int quantity)

Adds a specific item to the combination.

Parameters:

item - the item to add to the combination

quantity - the quantity of that item required to satisfy the combination

validItems
public boolean validItems(com.badlogic.gdx.utils.Array<CraftingManager
.Item> givenItems)

Tests if the given list of items corresponds to the items needed in this combination. Returns true
if the given list of items form this combination.

Parameters:

givenItems - a list of items tested to match the combination

Returns:

true, if the given list of items match the combination.

contains
public boolean contains(CraftingManager.Item item)

Returns true if this combination contains this item, which is needed to form this combination.

Parameters:

391

item - the item to be tested to be contained in the combination

Returns:

true, if the item is contained in the combination

getResult
public CraftingManager.Item getResult()

Sets the resulting item from the crafting combination

setResult
public void setResult(java.lang.Class item, int quantity)

Gets the resulting item from the crafting combination.

Parameters:

item - the item which will be crafted by the combination

quantity - the quantity of the item that will be crafted.

public class CraftingManager.Item
extends java.lang.Object

Pairs an item with a specific quantity for use inside a Combination.

Field Detail

quantity
private int quantity

Stores the quantity of the item needed in a combination

item
private java.lang.Class item

Holds the item needed in a combination

Constructor Detail

392

CraftingManager.Item
public CraftingManager.Item(java.lang.Class item, int quantity)

Creates a pair between an item and a specific quantity.

Parameters:

item - the item type

quantity - the quantity of the item

Method Detail

add
public void add(int quantity)

Adds the given quantity to this item instance.

Parameters:

quantity - the quantity to add

equals
public boolean equals(CraftingManager.Item other)

Returns true if the given item is equal to this item.

Parameters:

other - the other item to test equivalence with

Returns:

true, if the given item is the same in type and quantity as this item.

getItem
public java.lang.Class getItem()

Gets the item class held by this instance.

setItem

public void setItem(java.lang.Class item)

393

Sets the item class held by this instance.

getQuantity
public int getQuantity()

Gets the quantity of the item.

setQuantity
public void setQuantity(int quantity)

Sets the quantity of the item.

toString
public java.lang.String toString()

Overrides:

toString in class java.lang.Object

II.3.2.19 ItemManager Inner Classes

Figure 97 : ItemManager inner classes

394

class ItemManager.ItemPool
extends com.badlogic.gdx.utils.Pool<Item>

 Stores a pool of an Item subclass. The Item subclass stored in this pool is determined by

the argument passed into the constructor of this class.

Field Detail

itemConstructor
private com.badlogic.gdx.utils.reflect.Constructor itemConstructor

Stores the constructor used to create instances of the item in the pool.

Constructor Detail

ItemManager.ItemPool
public ItemManager.ItemPool(java.lang.Class itemClass)

Creates a pool of items for the given class.

Parameters:

itemClass - the type of item to pool

Method Detail

newObject
protected Item newObject()

Returns a new instance of the Item when none are free in the pool.

Specified by:

newObject in class com.badlogic.gdx.utils.Pool<Item>

Returns:

an item instance of the class denoted by the pool

class ItemManager.SpritePool
extends
com.badlogic.gdx.utils.Pool<com.badlogic.gdx.graphics.g2d.Sprite>

395

 Stores a pool of sprites for each item. The sprite displays the item passed as an argument to the

constructor.

Field Detail

itemClass
private java.lang.Class itemClass

Stores an item subclass. This is the item for which sprites will be produced. These sprites
represent the inventory sprites displayed for this item.

Constructor Detail

ItemManager.SpritePool
public ItemManager.SpritePool(java.lang.Class itemClass)

Creates a pool of items for the given class.

Parameters:

itemClass - the item class for which to generate sprites for

Method Detail

newObject
protected com.badlogic.gdx.graphics.g2d.Sprite newObject()

Returns a new inventory sprite for the item when none are already free in the pool.

Specified by:

newObject in
class com.badlogic.gdx.utils.Pool<com.badlogic.gdx.graphics.g2d.Spr
ite>

Returns:

a new Sprite instance for the item class represented by the pool

396

II.3.2,20 GestureManager Hierarchy

Figure 97 : GestureManager class hierarchy

 Note: Given that the GestureAdapter is part of the LibGDX library, its methods and data

fields are not given any explanations. For such an explanation, refer to LibGDX's documentation.

397

II.3.2.21 InputManager Hierarchy

Figure 97 : InputManager class hierarchy

 Note: Given that the InputProcessor is part of the LibGDX library, its methods and data

fields are not given any explanations. For such an explanation, refer to LibGDX's documentation.

398

III. Methods of Evaluation

 To evaluate our project, we let other people play our game. For instance, we allowed our

instructor play the game, and, in turn, we extracted valuable feedback which allowed us to

implement extra features, or change already-existing ones in order to enhance the quality of our

application.

 Below this is a list of the individuals who tested the game, along with their feedback (i.e.,

the results of our evaluation) :

Tester Feedback (Evaluation Results)

Amin Ranj Bar • Add music and sound to the finished product

• Add a game select screen, which allows the player to either

choose, load, or create a new world

Ho Man Chan • Make the combat feel faster

Adrian Gammon • Make the hit boxes on the items larger, so that users have less

difficulty in tapping on items to pick them up

Olivier Carrière • Make the aiming mechanic for the rifle faster, in order to avoid

boring the user as he charges his ranged weapon

Jason Ege • Make the backpack button bigger

Julian Lucuix-André • Add a Save button in the pause menu

Jacky Ma • Don't make the game save when you quit (implement a save

button)

Franky Tam • Make the player walk faster

• Make the zombie walk slower

399

Frederic Lam • Make the pause button bigger

Bradley Arsenault • Add a list of recipes inside the survival guide

• Don't make the player lose all his items when he dies from a

zombie

Trevor Fernandez • Make the zombie run faster

Wai Lun Lau • Put a yellow exclamation point on top of the zombie's head when

he sees you

Kevin Tran • Put the entries inside the survival guide inside a scroll pane in

order to be able to add more entries

Olivier Zephir • Make the zombie's charge attack faster

Maxime Nguyen • Make the earthquake do less damage

Table 1: Testing and feedback results

 As a result, all of the feedback provided for the project was taken into great

consideration. For this reason, all of the suggestions given above were implemented into the final

product. Although some of the feedback required additional features to be implemented, we

nevertheless decided to include them for the sake of delivering a polished finished product.

 The following sections will include further methods we used to evaluate our project,

along with the results of said evaluations. They were omitted from this section to avoid

repetition.

400

IV. Results: System Quality

IV.1 Developer Perception

The strength of the system we are most proud is the optimizations that were made with

the code, and the overall design of our algorithms. Among these algorithms are procedural

generation. In fact, programmatically, the forest in Free the Bob is built using a “terrain level”.

This level consists of a fixed-size matrix, where every element consists of a “terrain layer”. In

turn, each layer is represented as either a constant, linear, or cosine function which the player can

walk on. From a programmatic perspective, the player is always at the center of the terrain level.

When the player moves from one layer to another, the level adjusts its matrix and moves the

layers so that the player always resides in the center-most layer. Once the layers are re-positioned

inside the matrix, their row and columns relative to the world also change. Using the layer’s cell

coordinates, along with a random number generator, the layer’s terrain is built. As explained in

Section II.1 Algorithms, this algorithm is very efficient.In fact, the operation of defining an

elementary function for a TerrainLayer takes O(1) time. For this reason, our procedural terrain

generation algorithm runs very efficiently, and we are thus very proud of it.

Figure 102: Visual representation of the TerrainLayer matrix

Conversely, to place objects on the layer, a different random number generator seed is

computed. To calculate said seed, the terrain layer’s row, column are added. To this sum is added

the world seed. The resulting number is called the object seed. Since every layer has unique cell

coordinate in the world, each layer has a unique seed. This object-placement algorithm takes

terrainLayers[0][0]

401

O(n) time, as explained in Section II.1 Algorithms. For this reason, the procedural generation is

able to run efficiently. Thus, we are proud of our coding on this front.

Moreover, the game contains the World class, which holds a reference to the terrain level,

along with the GameObjects contained in the game. In addition, it controls all game logic. Thus,

the class can be seen as a container or a master class for most of the game’s entities and

gameplay mechanics. This World class allowed us to use the Model-View-Controller (MVC)

pattern. In fact, the world represents a model. In turn, the renderers represent the view, and the

Input/GestureManager represents the controller. Thus, given that we successfully implemented a

design pattern which we did not cover in class, we are satisfied with the quality of our system.

 Furthermore, our input handling algorithms were optimized to avoid causing framerate

spikes whenever the user taps on the screen. As everything else in the project, delivering a user-

friendly experience was at the forefront of all our coding decisions. For instance, to process

input, every finger tap is first delegated to the InputManager class. Then, the InputManager,

which holds an instance of the camera used to render the world, can convert the given tap

coordinates into world coordinates. The position of the tap is then delegated to the World, which

can subsequently decide how to process the touch. This operation takes O(n) time, as explained

in Section II.1 Algorithms. Thus, judging from the efficiency of our algorithms, we could state

that the quality of our project was very strong.

A technique called camera culling was implemented to optimize object rendering. This is

another algorithmic strength of the project that we like. If an object happens to be outside the

camera, it is not rendered by OpenGL. If it is viewable by the camera, it is drawn.

We also like the coding methods we used to manage the in-game GUIs. In fact, to render

a heads-up display for the game, several subclasses are derived from the Hud class. This class

holds a Stage, a LibGDX object used to draw 2d widgets to the screen. Each Hud subclass holds

buttons and widgets that will be drawn to the screen using this stage. Using LibGDX's scene2d

library allowed us to create responsive and user-friendly GUIs.

Furthermore, we are happy with the way the GUIs were designed, and thus like the layout

of our program. In fact, all of the game's menus were optimized to make the user experience feel

402

approachable on a mobile phone. Thus, we ensured that every button was large, and that every

button was easily visible and distinguishable from all the others. We even went as far as to

implement the GameSelectScreen as per the teacher's feedback, which allowed us to greatly

improve user comprehension of the graphical user interface and of the game's functionality.

 However, one of the shortcomings of our project at the beginning was the

WorldSelectScreen. In fact, players were confused as they looked at the screen. They had a hard

time understanding the concept of profiles. However, upon showing the program to the

instructor, he gave us the feedback to add a GameSelectScreen, wherein the user would have an

option to either load, continue, or create a new profile. Thus, by implementing this new screen,

we removed the weakness of our layout and turned it into a strength. Therefore the reasons stated

above, we are proud of our coding and the layout of our system.

IV.2 Objective Measure

 In order to measure the quality of our sytem, we utilized a frame rate counter. In fact, we

logged the frame rate of our application on several different devices. Using the data collected

from these tests, we were able to measure quality of our system, and make necessary

adjustments. In point of fact, we changed certain weaknesses in our code in order to optimize the

game's performance.

 Furthermore, as detailed in Section III Methods of Evaluation, we let others play the

game and collected their feedback. This allowed us to ensure that we met our objectives for the

project. In turn, we created a table which collected all of the suggestions given from the people

who tested it. Subsequently, we made necessary adjustments and improvements to our code,

optimizing the user experience to make the game feel as fun and responsive as possible.

 In addition, in order to test the quality of our project, we tested the game on low-end

Android devices. In fact, we chose to test it on lower-end phones in order to ensure that it would

run smoothly on every other Android device. If we were to test it on high-end Android devices,

the game would run smoothly, and we would not be able to determine whether our program is

optimized for every phone on the market.

403

 Finally, in order to test our project's quality, we tested the game on different-sized phones

and tablets. In turn, we were able to deduce whether or not the game would be able to run on

every size phone.

IV.3 Developer Evaluation Sheets

 As stated in the previous section, we used a frame rate counter to test our project's

quality, and recorded the average frame rate for the game on several Android devices. We did

this near the end of the project, where we had to ensure that the quality of our project was as

strong as possible.

 The first time we tested the game and logged its frame rate, we received the following

results:

Device Android Version Average Frame Rate

(frames/second)

HTC Desire Z 2.3.4 45.2

Kindle Fire 2.3.6 47.1

Samsung Galaxy SII 4.2.1 58.7

Table 2: Trial one: Frame rate tests on different Android devices

 As seen in the table above, the game runs very smoothly on the Samsung Galaxy SII, but

less well on the HTC Desire Z and the Kindle Fire. In fact, the optimal frame rate for a game is

60 frames per second. Furthermore, there seemed to be a somewhat linear relationship between

the Android version and the average frame rate.

 Considering the results we gathered, we needed to find ways in which to optimize the

game for lower-end Android devices. Therefore, upon conducting online research, we found that,

in order to optimize image rendering, we needed to store images inside TextureAtlases. This

makes it so that several images are grouped into a larger image, reducing the number of draw

404

calls due to GPU texture bindings. After placing our images into atlases, the following

performances were observed.

Device Android Version Average Frame Rate

(frames/second)

HTC Desire Z 2.3.4 52.2

Kindle Fire 2.3.6 53.1

Samsung Galaxy SII 4.2.1 58.8

Table 3: Trial two: Frame rate tests on different Android devices

 As seen with the evaluation sheet above, placing images in atlases highly optimized the

performance of our program. In fact, the HTC Desire Z gained a significant 7.0 increase in frame

rate. With this improvement, our program almost reached optimum performance. In truth, a 52.2

frame rate on a low-end device such as the aforementioned HTC phone is highly satisfactory.

 However, we wanted to increase the program's performance even further. Therefore, we

decided to implement different asset loading techniques. For instance, even when the player was

in the game, the main menu images were still loaded in memory. This was very poor memory

management, given the low amount of RAM on most low-end phones. Therefore, we added the

optimization which consisted of disposing of the main menu assets whenever the user left the

main menu. Subsequent to this optimization, the following performances were observed.

Device Android Version Average Frame Rate (frames/second)

HTC Desire Z 2.3.4 54.2

Kindle Fire 2.3.6 55.1

Samsung Galaxy SII 4.2.1 58.8

Table 4: Trial three: Frame rate tests on different Android devices

405

 Although the higher-end Galaxy SII did not gain much of a performance boost, the HTC

Desire Z and the Kindle Fire both gained a 1.0 frame rate increase. Given that these frame rates

were solid, and that the program was nearing its deadline, we decided to stay with these

optimizations, and move on to bug-fixing.

406

V. Project Management

V.1 Timeline

Task Planned date Actual date Assigned
Person

Notes

Brainstorm Project Ideas, Create
Game's Story

Week 1 Week 1 Jonathan Completed within
expected time

Create Timeline, Features List,
Design UML

Week 2 Week 2 Team Started preparing
for presentation

Create PowerPoint Presentation,
Create Design & GUI Portion of
Proposal Document

Week 3 Week 3 Jonathan Extra drawings
had to be made for
presentation

Randomly-Generated Terrain Week 4 Week 5 Team Delayed by one
week due to
exams.

Profiles & Saving Data to the Hard
Drive

Week 5 Week 5 Jonathan Profile saving also
modified on week
14

Character Movement (Jumping,
Falling &Walking), Exploration
GUI

Week 6 Week 6 Jonathan Modified gravity
from 9.8m/s2 to
custom value to
ensure game felt
fun

Scavenging (Trees & Boxes) Week 7 Week 6 Team Completed earlier
than expected
since we both
worked on it

Item Dropping, Inventory &
Crafting GUI, Splash Screen

Week 8 Week 8 Mugisha Research had to
be made on
chemical formulas

Loading Screen, World Select
Menu, Main Menu

Week 9 Week 9 Jonathan Also added
GameSelectScreen
on week 14

407

Weapons (Melee & Ranged),
Polished Animations

Week 10 Week 10 Jonathan Received good
feedback on
animations

Zombies, Zombie AI (Walking),
Tutorial

Week 11 Week 11 Mugisha Decided to
include tutorial
inside survival
guide instead of in
cutscene

Zombie AI (Combat), Player
Combat (Ranged Weapons)

Week 12 Week 12 Jonathan Zombie combat
modified to be
faster on week 14

Player Combat (Melee Weapons),
Combat GUI

Week 13 Week 13 Mugisha Modified
appearance of
Combat GUI on
week 13

Survival Guide GUI, Crafting
System, Teleporter

Week 14 Week 14 Jonathan Also performed
play-testing
sessions

Preparation of Presentation,
Optional Features: Eating
Mechanic, Player Menu GUI &
Eating System

Week 15 Week 15 Team Optional features
replaced by audio
playback and
GameSelectScreen

Writing Design Document Week 16 Week 16 Team UML had to be
drastically
changed

Table 5: Timeline

408

VI. Conclusion

 In closing, we were very successful in completing our assumed tasks. In fact, we

developed a game which is able to test the player's knowledge in chemistry. Furthermore, we

were able to build a procedurally generated world using elementary mathematical functions,

testing our own knowledge in the field of mathematics.

 Additionally, we were successful in completing our tasks, since every mandatory feature

that was a part of the project's proposal document was implemented. Not only that, but all of our

features are fully functional, delivering on the promises which we initially set out to accomplish.

What is more, we scheduled our time highly efficiently, allowing us to let other play-test the

game and receive feedback from fellow gamers. From these suggestions, we implemented

additional features which looked to improve the user's experience when playing the game.

Among these features are the inclusion of audio, a game selection screen, and enlarged item hit

boxes. These additions are also fully-functional, allowing the final product to meet a high degree

of quality. The project thus utilizes a myriad of different techniques we have learned throughout

our CEGEP courses, such as the use of the random number generators, the creation of

compounds using chemical items, and the graphing of elementary functions.

Feature Completion Status

Randomly Generated World Completed

Character Movement Completed

Survival Guide Completed

Profiles Completed

Zombies Completed

Combat Completed

Scavenging Completed

409

Items Completed

Transparently-Tinted

GameObjects

Completed

Weapons Completed

Android Compatibility Completed

LibGDX Framework Completed

Multiple Screen Size Support Completed

Crisp Graphics Completed

Polished Animations Completed

Tutorial Completed

PC Combatibility Completed

Optional Features: Eating Uncompleted

Added: GameSelectScreen Completed

Added: Sound & Music Completed

Table 6: Feature completion statuses

 In terms of the procedurally generated world, we were very successful in completing our

tasks. In fact, there was a large amount of work required to make it function properly. For

instance, the concept of TerrainLayers had to be implemented, and the corresponding

TerrainLevel class had to be created in order to hold a reference to a matrix of layers. What

proved to be most difficult was optimizing the procedural generation with object pooling. In fact,

creating the world in an efficient way was very difficult. However, given that our target

platforms was Android devices, we decided to optimize the process as much as possible, in order

410

to avoid framerate dips on lower-end devices. However, this was a learning experience for us, as

it allowed us to test our abilities to optimize code. In the end, given that the game runs at a

serviceable framerate, even on lower-end devices, we are happy with the amount of work we put

into the optimization of our code. Therefore, this was a learning experience, as it taught us the

concept of object pooling, along with the mere fact that optimizing your code can prove to be

highly beneficial in the long term.

 On a separate note, the implementation of the character movement was slightly less

difficult. In fact, using our concept of TerrainLayers, the major advantage was that each layer

represents an elementary mathematical function. Thus, in order to allow the user to walk across

the world, we simply apply an x-velocity to the player GameObject. Then, given the x-position

of the player, the corresponding y-position can be found simply by inputting the x-position into

the layer's function. The same concept is utilized for zombie movement.

 This was also a learning experience for us, as it taught us that implementing every feature

in an intelligent manner saves time in the long run. For instance, thanks to our natural

implementation of the TerrainLayer and its corresponding elementary functions, we were able to

easily implement character movement, without the need for coding workarounds. Furthermore,

this feature was not large in terms of quantity, since the algorithm is simple. The same can be

said with regards to the jumping mechanic. All that was needed was to add a y-velocity to the

player, apply gravity, make him switch layers, and place him at the right y-position once he

landed on his new layer. Once again, this taught us that intelligent programming saves time in

the long term.

 Next, the Survival Guide feature was rather quick to implement. In fact, the volume of

tasks needed to complete such a feature was not very large. In point of truth, given that we had

implemented a HUD superclass, which allowed us to easily create user interfaces when the user

was in-game, we were able to use the scene2d framework's GUI widgets in order to place a list

of entries in a scrollpane. Further, when the user presses on one of these entries, the list is

swapped with a label which displays the contents of the entry. Thus, it was not difficult to

implement, as we utilized the pre-existing scene2d widgets. Further, this was a learning

experience for us, as it forced us to create the HUD superclass in order to easily create different

411

GUIs for the player to interact with. As before, this smart implementation taught us that efficient

programming can effectively save time when enlarging the scope of the program.

 The implementation of profiles was more difficult. In fact, it was a learning experience

for us, as it forced us to use the JSON file format, which we had never seen before. However,

given that said file format felt intuitive, it was less difficult than expected to implement. In fact,

what we did was we created a Profile class, which acted as a data container for each of the

player's profiles. When needed, the profiles were saved to the hard drive, and loaded by the

ProfileManager whenever the game restarted. Therefore, we learned that creating Manager

classes allowed greater flexibility in our coding, and effectively avoided copy-pasting code that

could be implemented once inside a class. Furthermore, the biggest difficulty we encountered

was parsing HashMaps into the JSON file format. In fact, LibGDX did not provide a pre-built

way to parse and read HashMaps, and we thus had to resort to converting the map into a string of

text, and parsing it manually into the JSON file. Thus, the quantity of work required was rather

large, as we needed to resort to workarounds in our code for everything to function properly.

However, this was a learning experience, because it taught us how to find workarounds when a

library presented certain limitations.

 Next, in terms of the zombies, the quantity of work required was large. First, the art for

the zombie, along with his animations had to be created. Then, we had to import the zombie into

the game, and control his walking patterns using artificial intelligence. Moreover, we then had to

implement a vision system, which allowed the zombie to see the player when he came too close.

To solve these problems, we created an external helper class named ZombieManager, which

allowed us to separate the zombie game logic from the game logic of every other class. Thus,

this allowed our World class to become slightly less jumbled, effectively avoiding spaghetti-

code. For this reason, our implementation of the zombies was a learning experience, as it taught

us that separating code into separate classes could avoid over-complicating our program.

However, given that our implementation of the zombie movements was rather simple, the only

difficult part was animating the zombie, and making him see the player when he came too close.

However, this was solved by simply comparing the zombie's distance with that of the player,

determining whether or not the player was close enough for the zombie to follow him.

412

 Next, our implementation of combat was less time-consuming than expected. For

instance, to create a separate playing field for the combat, we simply implemented the

CombatLevel, which allowed the player and the zombie to be placed on a horizontal playing

field. Furthermore, this class defined the line which denoted the bounds of the level. Next, to

enter combat, the player's bounding box was simply checked against that of a zombie. If both the

player and the zombie intersected, the KoAnimation would play, and the World would switch to

the CombatLevel. It is important to note that the CombatLevel extended the Level superclass.

This was crucial to our implementation. In fact, by creating a Level superclass, it allowed us to

easily switch between the forest and the combat, without creating any larger code paths. Thus,

this taught us that the concept of polymorphism and inheritence is highly useful when attempting

to minimize the amount of code paths. Furthermore, thanks to concept of HUDs, as explained

above, we were able to use scene2d widgets to display the jump, melee and fire buttons. For this

reason, the implementation of the combat was not difficult. Furthermore, as explained in Section

II.1 Algorithms, implementing the zombie's artificial intelligence during combat was simple. In

fact, all that needed to be done was to switch the state of the zombie and the player accordingly,

dealing damage when the zombie or the player hits each other.

 Next, the scavenging feature was more difficult to implement. In fact, what we did was

include HashMap for every object which could drop items. Each HashMap had a key

corresponding to an Item subclass, and a value corresponding to a float between 0 and 1.0. If the

value of a certain item was 1.0, the item had a one-hundred percent chance of spawning once the

object is scavenged. If the value was 0.5, the item has a 50% chance of spawning. Note that the

spawning is done inside the World class, whose spawnItems() method is called whenever an

object is scavenged. In turn, the aformentioned HashMap for that object is taken, and are

randomly generated accordingly. The ItemObjects are shot out using the ItemObject.spawn()

method, which gives each object a certain velocity when spawned in order to create a confetti

effect. Thus, the implementation of the scavenging was not difficult, and there was not a large

amount of necessary work needed to implement it. However, coming up with the actual

algorithm was far more difficult. It turned out to be a learning process, however, as we were

forced to learn how to use HashMaps.

413

 Furthermore, the item feature was slightly more difficult. In fact, throughout the program,

in order to optimize the creation and destruction of objects, we used the Class instance of each

item in order to denote an item type. For instance, instead of creating a new Wood instance

whenever a new Wood item needs to be spawned, the item was simply refered to by its class (i.e.,

Wood.class). However, if the information for a particular item needed to be retrieved, the

ItemManager created and pooled Wood instances, and passed them out to interested parties. On a

separate note, while the actual Item class denotes a data container for each item, the ItemObject

class represents the physical representation of an item dropped in the world. This allowed us to

separate the model from the view when discussing the MVC (Model-View-Controller) pattern.

Thus, the implementation of items was time-consuming and difficult. In fact, we had to create

data containers for each different item, along with sprites for each one. In turn, we also had to

implement pools for each Item type, along with their corresponding sprites. Thus, although the

algorithm used was not complex, the overall design was time-consuming due to the shear amount

of items that the player can collect. However, this was a learning experience, as it taught us how

to manage an inventory containing a large amount of items, which could ultimately prove useful

in many different types of applications.

 Next, the transparently-tinted GameObjects were far easier to implement. In fact, when

the each GameObject was drawn, its terrainCell was taken, and compared to the TerrainLevel. If

the GameObject was on the same row as the player, then it retained its normal colour.

Conversely, if the GameObject was on a different row, it was coloured dark-gray. This allows

the user to know which objects he can interact with. Thus, given that we used to the Spine

runtime library, we were able to switch the colour of the GameObjects by changing the colour of

their skeletons. For instance, in pseudo-code, we set the colour as follows:

skeleton.setColor(Color.DARK_GRAY);

 Thus, given that the code needed to colour the GameObjects was already implemented, it

was not time-consuming to implement the feature. In fact, it was rather easy. Also, given that we

had given each GameObject a terrainCell, in order to know to which TerrainLayer it belongs, it

was easy to determine when a GameObject should have been coloured transparent or not. Thus,

this was a learning experience for us. In truth, we learned that planning ahead in terms of data

414

fields proves to be beneficial in the long term.

 Moreover, the Weapons feature was slightly more difficult to create. In fact, given that

we already created Item subclasses for the weapons, we needed to find a way to give them

functionality. Therefore, we created the Weapon, RangedWeapon and MeleeWeapon subclasses.

In turn, whenever an item extends Weapon, it can be equipped by the player through his Loadout

class. Further, all weapons have damage floating points, which allows the user to deal damage to

zombies. Furthermore, the RangedWeapon also has a chargeTime float, which determines how

much time it will take to charge the weapon. On a different note, in order to visually display the

weapons on the player, we placed images on the player. Whenever he was using a certain

weapon, that image was activated, and thus displayed. This was a difficult feature to implement,

as it required to set up extra bones and images on the player in the animation engine. For this

reason, the quantity of work required was large, as it required us to create animations for each

weapon. However, in the long term, it was worth it, as it allowed the player to engage in combat

with a zombie. It was also a learning experience, as it taught us how to create weapons and

loadouts for the player, a feature we will surely implement in future applications.

 On a separate note, Android Compatibility was not difficult to implement. In fact, simply

by creating a LibGDX project, we automatically had the option of deploying the application to

Andoird devices. Thus, it was a learning experience, as it taught us that creating Android

applications was less difficult than it seemed. Moreover, the quantity of work required was also

small, as the creation of a project was enough to create Android compatibility. The same can be

said about the LibGDX Framework feature. In fact, all we had to do was download the LibGDX

application, and create a project using this framework. Granted, we did have to learn an

abundance of new classes. In this way, it was a learning process, as we were forced to often look

at the framework's documentation. Thus, it required a large quantity of work, even though it

wasn't very long to do. Granted, traversing the documentation is a skill that will help a great deal

us in the future.

 Overall, we were very happy with the quality of all our features. In fact, all of them were

tested to be working. Furthermore, during the testing phase, most testers found the features to be

engaging and thoughtful. In reality, as explained in Section IV.1 Developer Perception, we are

415

very satisfied with the quality of our project.

 Thus, in closing, with the knowledge collected from prior courses, we have delivered a

game that both teaches and entertains, creating a finished product that can be published to

gamers' smartphones, and that can potentially intrigue the likes of many Android users.

	Free the Bob - Design Document
	Field Detail
	position
	previousPosition
	oldVelocity
	velocity
	acceleration
	collider
	skeleton
	terrainCell
	objectId
	stateTime

	Constructor Detail
	GameObject
	GameObject

	Method Detail
	update
	updatePosition
	updateCollider
	canTarget
	getPosition
	setPosition
	getX
	setX
	getY
	setY
	getPreviousPosition
	getVelocity
	setVelocity
	setVelocityX
	setVelocityY
	getAcceleration
	setAcceleration
	moveTo
	isAbove
	getCollider
	setCollider
	getSkeleton
	setSkeleton
	getTerrainCell
	setTerrainCell
	getStateTime
	setStateTime
	getObjectId
	setObjectId

	Field Detail
	mode
	state
	previousState
	direction
	target
	targetReached
	health
	invulnerabilityTime
	walkSpeed

	Constructor Detail
	Human

	Method Detail
	update
	loseTarget
	isFacing
	getMode
	setMode
	getState
	setState
	getPreviousState
	setPreviousState
	getDirection
	setDirection
	setTarget
	getTarget
	isTargetReached
	setTargetReached
	getWalkSpeed
	setWalkSpeed
	takeDamage
	makeInvulnerable
	isInvulnerable
	getInvulnerabilityTime
	setInvulnerabilityTime
	getHealth
	setHealth
	isDead
	reset

	Field Detail
	COLLIDER_WIDTH
	COLLIDER_HEIGHT
	DEFAULT_HEALTH
	MAX_WALK_SPEED
	EXPLORATION_JUMP_SPEED
	COMBAT_JUMP_SPEED
	FALL_SPEED
	HEAD_STOMP_DAMAGE
	HEAD_STOMP_JUMP_SPEED
	INVULNERABLE_TIME
	loadout
	inventory
	zombieToFight
	playerListener

	Constructor Detail
	Player
	Player

	Method Detail
	update
	jump
	fall
	chopTree
	melee
	charge
	fire
	meleeHit
	fireWeapon
	hitTree
	hitHead
	checkDead
	useBullets
	hasBullets
	getChargeCompletion
	regenerate
	takeDamage
	loseLoot
	loseTarget
	didWin
	canTarget
	getMeleeWeapon
	getRangedWeapon
	hasMeleeWeapon
	hasRangedWeapon
	hasRangedWeaponOut
	getMeleeWeaponCollider
	getCrosshair
	getCrosshairPoint
	makeInvulnerable
	getLoadout
	setLoadout
	getInventory
	setInventory
	getZombieToFight
	setZombieToFight
	setListener

	Field Detail
	COLLIDER_WIDTH
	COLLIDER_HEIGHT
	CHARGE_COLLIDER_WIDTH
	CHARGE_COLLIDER_HEIGHT
	NORMAL_WALK_SPEED
	COMBAT_WALK_SPEED
	ALERTED_WALK_SPEED
	CHARGE_WALK_SPEED
	DEFAULT_CHARGE_DAMAGE
	ALERTED_ANIM_SPEED
	JUMP_SPEED
	FALL_SPEED
	INVULNERABLE_TIME
	DEFAULT_HEALTH
	alerted
	targetted
	chargeCollider
	armCollider
	rightHandBone
	leftHandBone
	itemProbabilityMap
	animationState

	Constructor Detail
	Zombie
	Zombie

	Method Detail
	setupItemProbabilityMap
	updateColliders
	update
	jump
	fall
	chargeHit
	loseTarget
	canTarget
	setState
	getAnimationState
	setAnimationState
	isAlerted
	setAlerted
	makeInvulnerable
	isTargetted
	setTargetted
	getChargeCollider
	setChargeCollider
	getArmCollider
	setArmCollider
	getRightHandBone
	setRightHandBone
	getLeftHandBone
	setLeftHandBone
	getItemProbabilityMap
	setItemProbabilityMap
	reset

	Field Detail
	interactiveState
	itemProbabilityMap

	Constructor Detail
	InteractiveObject

	Method Detail
	targetted
	untargetted
	canTarget
	getInteractiveState
	setInteractiveState
	getItemProbabilityMap
	setItemProbabilityMap
	reset
	update
	scavenged

	Field Detail
	COLLIDER_WIDTH
	COLLIDER_HEIGHT

	Constructor Detail
	Box
	Box

	Method Detail
	update
	setupItemProbabilityMap
	scavenged

	Field Detail
	COLLIDER_WIDTH
	COLLIDER_HEIGHT
	DEFAULT_HEALTH
	health

	Constructor Detail
	Tree
	Tree

	Method Detail
	update
	reset
	setupItemProbabilityMap
	takeDamage
	scavenged
	getHealth
	setHealth

	Field Detail
	damage
	fireVelocity

	Constructor Detail
	Projectile
	Projectile

	Method Detail
	update
	fire
	hit
	getDamage
	setDamage
	getFireVelocity

	Field Detail
	COLLIDER_WIDTH
	COLLIDER_HEIGHT
	FIRE_VELOCITY_X
	FIRE_VELOCITY_Y
	DAMAGE

	Constructor Detail
	Earthquake
	Earthquake

	Method Detail
	canTarget

	Field Detail
	COLLIDER_WIDTH
	COLLIDER_HEIGHT
	DEFAULT_SPRITE_WIDTH
	DEFAULT_SPRITE_HEIGHT
	MIN_Y_SPAWN_VELOCITY
	MAX_Y_SPAWN_VELOCITY
	MIN_X_SPAWN_VELOCITY
	MAX_X_SPAWN_VELOCITY
	itemState
	item

	Constructor Detail
	ItemObject
	ItemObject

	Method Detail
	update
	updateCollider
	spawn
	canTarget
	getItemState
	setItemState
	getItem
	setItem
	reset

	Field Detail
	position

	Constructor Detail
	Collider
	Collider

	Method Detail
	setPosition
	getPosition
	intersects
	intersects
	insideCamera

	Field Detail
	width
	height

	Constructor Detail
	Rectangle
	Rectangle
	Rectangle

	Method Detail
	intersects
	intersects
	insideCamera
	getTop
	setSize
	getWidth
	setWidth
	getHeight
	setHeight
	toString

	Field Detail
	row
	col
	LAYER_WIDTH
	LAYER_HEIGHT
	GROUND_HEIGHT
	OBJECT_HEIGHT
	OBJECT_SPACING
	MAX_SLOPE
	MIN_SLOPE
	MAX_AMPLITUDE
	MIN_AMPLITUDE
	COSINE_FREQUENCY
	EDGE_MARGIN
	ZOMBIE_PROBABILITY_RATE
	leftPoint
	rightPoint
	slope
	amplitude
	cosineXOffset
	cosineYOffset
	terrainType
	terrainDirection
	worldSeed
	goManager
	terrainRand
	objectRand
	profile
	gameObjects
	gameObjectsStored
	trees
	boxes
	zombies
	itemObjects

	Constructor Detail
	TerrainLayer

	Method Detail
	resetLayer
	resetTerrain
	resetObjects
	canSpawnZombie
	freeGameObjects
	addGameObject
	removeGameObject
	getGameObjects
	getTrees
	getBoxes
	getZombies
	getItemObjects
	closeToEdge
	getCenterX
	getCenterGroundHeight
	getGroundHeight
	getObjectHeight
	getTopLayerHeight
	getBottomLayerHeight
	setCell
	setRow
	getRow
	setCol
	getCol
	setStartPosition
	getLeftPoint
	getRightPoint
	getTerrainType
	toString

	Method Detail
	getPlayerStartX
	getPlayerStartY
	getGroundHeight
	outOfBounds
	addGameObject
	removeGameObject
	getGameObjects

	Field Detail
	NUM_LAYER_ROWS
	NUM_LAYER_COLS
	START_X_POS
	START_Y_POS
	profile
	trees
	boxes
	zombies
	itemObjects
	gameObjects
	gameObjectsStored
	layers

	Constructor Detail
	TerrainLevel

	Method Detail
	generateLayers
	shiftLayersUp
	shiftLayersDown
	shiftLayersRight
	shiftLayersLeft
	addGameObject
	removeGameObject
	getGameObjects
	getTerrainLayer
	getTerrainLayer
	getTerrainLayer
	inCenterRow
	outOfBounds
	getCenterLayer
	getMiddleLayers
	getBottomLeftLayer
	getTopRightLayer
	getGroundHeight
	getCenterRow
	getCenterCol
	getBottomLeftRow
	getBottomLeftCol
	getPlayerStartX
	getPlayerStartY
	getTerrainLayers
	setLevelLayers
	getTrees
	getBoxes
	getZombies
	getItemObjects

	Field Detail
	LEVEL_WIDTH
	LINE_HEIGHT
	START_X
	GROUND_HEIGHT
	leftPoint
	rightPoint
	previousPlayerX
	previousZombieX
	player
	zombie
	projectiles
	gameObjects
	gameObjectsStored

	Constructor Detail
	CombatLevel

	Method Detail
	startFighting
	stopFighting
	getPlayerStartX
	getPlayerStartY
	getZombieStartX
	getZombieStartY
	outOfBounds
	isPastLeftEdge
	isPastRightEdge
	getGroundHeight
	addGameObject
	removeGameObject
	getGameObjects
	getLeftPoint
	getRightPoint
	getPlayer
	setPlayer
	getZombie
	setZombie
	getPreviousPlayerX
	setPreviousPlayerX
	getPreviousZombieX
	setPreviousZombieX

	Field Detail
	GRAVITY_EXPLORATION
	GRAVITY_COMBAT
	worldSeed
	profile
	worldState
	goManager
	zombieManager
	itemManager
	level
	terrainLevel
	combatLevel
	player
	worldListener
	eventListener
	soundListener
	touchPoint

	Constructor Detail
	World

	Method Detail
	update
	updatePlayer
	updatePlayerExploring
	updatePlayerCombat
	updateLevelObjects
	updateItemObject
	updateProjectile
	walk
	stopMoving
	setTarget
	gameObjectClicked
	playVersusAnimation
	enterCombat
	exitCombat
	checkPlayerCollisions
	checkCombatCollisions
	checkTargetCollisions
	checkProjectileCollisions
	scavengeObject
	lockToGround
	checkForLayerSwitch
	checkGroundCollision
	outOfBounds
	spawnItems
	collectItemObject
	spawnEarthquake
	touchUp
	setupPlayer
	winGame
	closeToLayerEdge
	playSound
	getLevel
	setLevel
	getTerrainLevel
	setTerrainLevel
	getCombatLevel
	getWorldState
	setWorldState
	getGOManager
	setGOManager
	getPlayer
	setPlayer
	getWorldListener
	setWorldListener
	getSoundListener
	setSoundListener

	Field Detail
	worldWidth
	worldHeight
	world
	batcher
	worldCamera
	levelRenderer
	goRenderer
	animationRenderer
	effectRenderer

	Constructor Detail
	WorldRenderer

	Method Detail
	updateCamera
	render
	getWorldCamera
	getWorldCamera
	resize

	Field Detail
	world
	batcher
	assets
	worldCamera
	playerRenderer
	interactiveObjectRenderer
	zombieRenderer
	itemObjectRenderer
	projectileRenderer

	Constructor Detail
	GameObjectRenderer

	Method Detail
	render
	renderLevelObjects

	Field Detail
	worldCamera
	batcher
	terrainRenderer
	combatRenderer

	Constructor Detail
	LevelRenderer

	Method Detail
	render
	resize

	Field Detail
	DEFAULT_LINE_WIDTH
	COSINE_SEGMENTS
	lineBounds
	worldCamera
	shapeRenderer

	Constructor Detail
	TerrainRenderer

	Method Detail
	render
	isInCamera
	isInCamera
	resize

	Field Detail
	batcher
	assets
	TRANSPARENT_COLOR
	workingColor
	events

	Constructor Detail
	InteractiveObjectRenderer

	Method Detail
	draw
	drawTree
	drawBox

	Field Detail
	batcher
	assets
	TRANSPARENT_COLOR
	workingColor
	events

	Constructor Detail
	ItemObjectRenderer

	Method Detail
	draw

	Field Detail
	world
	batcher
	worldCamera
	versusAnimation
	koAnimation

	Constructor Detail
	AnimationRenderer

	Method Detail
	render

	Field Detail
	world
	batcher
	worldCamera
	crosshairRenderer

	Constructor Detail
	EffectRenderer

	Method Detail
	render

	Field Detail
	batcher
	assets
	workingColor
	events

	Constructor Detail
	ProjectileRenderer

	Method Detail
	draw

	Field Detail
	world
	batcher
	assets
	worldCamera
	player
	playerSkeleton
	rightHandBone
	leftHandBone
	gunTipBone
	meleeWeaponSlot
	rangedWeaponSlot
	teleporterSlot
	axeAttachment
	rifleAttachment
	teleporterAttachment
	animStateData
	animationListener
	HIT_TREE
	HIT_ZOMBIE
	SOUND_FOOTSTEP

	Constructor Detail
	PlayerRenderer

	Method Detail
	setupAnimationStates
	render
	updateAnimation
	updateAttachments
	updateWeaponAttachments
	updateOtherAttachments
	updateCrosshair
	updateAttachmentColliders

	Field Detail
	world
	batcher
	assets
	TRANSPARENT_COLOR
	TARGETTED_COLOR
	animStateData
	animationListener
	workingColor
	HIT_GROUND

	Constructor Detail
	ZombieRenderer

	Method Detail
	setupAnimationStates
	draw
	updateAnimation
	updateAttachments
	updateColor
	updateTimeScale

	Field Detail
	game
	guiWidth
	guiHeight
	worldWidth
	worldHeight
	screenScaleX
	screenScaleY
	assets
	musicManager
	soundManager
	profileManager
	prefsManager
	settings
	batcher

	Constructor Detail
	Screen

	Method Detail
	render
	hide
	dispose
	resize

	Field Detail
	guiCamera
	frameCount
	TIME_SHOWN
	FADE_TIME
	fading
	fadeStartTime
	timeElapsed

	Constructor Detail
	CompanySplashScreen

	Method Detail
	show
	render
	update
	fadeWidgets
	draw
	pause
	resume
	resize

	Field Detail
	PROGRESS_LABEL_X
	PROGRESS_LABEL_Y
	HINT_LABEL_X
	HINT_LABEL_Y
	PLAYER_X
	PLAYER_Y
	HINT_DISPLAY_TIME
	guiCamera
	progressLabel
	hintLabel
	playerSkeleton
	hints
	hintTime
	playerStateTime
	displayTime
	events

	Constructor Detail
	LoadingScreen

	Method Detail
	show
	render
	update
	drawGUI
	resize
	pause
	resume

	Field Detail
	WORLD_LIST_WIDTH
	WORLD_LIST_HEIGHT
	BACKGROUND_X_OFFSET
	BACKGROUND_Y_OFFSET
	BACK_BUTTON_X_OFFSET
	BACK_BUTTON_Y_OFFSET
	stage
	inputListener
	inputMultiplexer
	table
	worldSelectBackground
	header
	startButton
	deleteButton
	backButton
	confirmDialog
	profileButtons
	profileButtonTable
	buttonListener
	buttonGroup
	scrollPane
	selectedProfileId

	Constructor Detail
	WorldSelectScreen

	Method Detail
	show
	createWorldList
	createButtonList
	createProfileButton
	deleteProfile
	render
	resize
	dispose
	pause
	resume
	fadeIn
	backPressed

	Field Detail
	stage
	inputListener
	inputMultiplexer
	table
	BUTTON_Y_OFFSET
	playButton
	optionsButton
	logoImage
	LOGO_X_OFFSET
	LOGO_Y_OFFSET
	BACKGROUND_X_OFFSET
	BACKGROUND_Y_OFFSET
	mainMenuBackground
	quitConfirmDialog

	Constructor Detail
	MainMenuScreen

	Method Detail
	show
	fadeIn
	fadeOut
	render
	resize
	dispose
	pause
	resume
	backPressed

	Field Detail
	LOADING_LABEL_X
	LOADING_LABEL_Y
	HINT_LABEL_X
	HINT_LABEL_Y
	PLAYER_X
	PLAYER_Y
	HINT_DISPLAY_TIME
	guiCamera
	loadingLabel
	hintLabel
	playerSkeleton
	hints
	hintTime
	playerStateTime
	displayTime
	events

	Constructor Detail
	MainMenuLoadingScreen

	Method Detail
	show
	render
	update
	drawGUI
	resize
	pause
	resume

	Field Detail
	BACKGROUND_X_OFFSET
	BACKGROUND_Y_OFFSET
	TABLE_Y_OFFSET
	BUTTON_X_OFFSET
	BUTTON_DISABLED_COLOR
	BACK_BUTTON_X_OFFSET
	BACK_BUTTON_Y_OFFSET
	stage
	inputListener
	inputMultiplexer
	table
	gameSelectBackground
	header
	continueButton
	newGameButton
	loadButton
	continueLabel
	newGameLabel
	loadLabel
	backButton
	WORLD_LIST_WIDTH

	Constructor Detail
	GameSelectScreen

	Method Detail
	show
	newGame
	continueGame
	render
	resize
	disableUselessButtons
	resizeButtons
	fadeIn
	dispose
	pause
	resume
	backPressed

	Field Detail
	gameState
	stateBeforePause
	paused
	profile
	itemManager
	world
	worldRenderer
	inputManager
	gestureManager
	stage
	inputMultiplexer
	hud
	explorationHud
	combatHud
	backpackHud
	survivalGuideHud
	craftingHud
	pauseMenuHud
	gameOverHud
	uiListener
	inputListener
	sfxListener

	Constructor Detail
	GameScreen

	Method Detail
	render
	update
	draw
	backPressed
	setGameState
	pauseGame
	resumeGame
	pauseForAnimation
	resumeForAnimation
	pauseHud
	resumeHud
	pauseInput
	resumeInput
	goToMainMenu
	show
	pause
	resume
	dispose
	resize

	Field Detail
	stage
	assets
	world
	hudListener

	Constructor Detail
	Hud

	Method Detail
	addHudListener
	draw
	reset

	Field Detail
	JUMP_BUTTON_X_OFFSET
	JUMP_BUTTON_Y_OFFSET
	MELEE_BUTTON_X_OFFSET
	MELEE_BUTTON_Y_OFFSET
	FIRE_BUTTON_X_OFFSET
	FIRE_BUTTON_Y_OFFSET
	JUMP_BUTTON_COLOR
	MELEE_BUTTON_COLOR
	FIRE_BUTTON_COLOR
	jumpButton
	meleeButton
	fireButton
	PAUSE_BUTTON_X_OFFSET
	PAUSE_BUTTON_Y_OFFSET
	PAUSE_HIT_BOX_SCALE
	pauseButton
	buttonListener
	buttonTouchListener

	Constructor Detail
	CombatHud

	Method Detail
	draw
	reset
	disableUselessButtons
	resizeButtons
	scaleHitBox

	Field Detail
	ARROW_BUTTON_X_OFFSET
	ARROW_BUTTON_Y_OFFSET
	ARROW_BUTTON_COLOR
	leftArrowButton
	rightArrowButton
	BACKPACK_BUTTON_X_OFFSET
	BACKPACK_BUTTON_Y_OFFSET
	BACKPACK_HIT_BOX_SCALE
	backpackButton
	PAUSE_BUTTON_X_OFFSET
	PAUSE_BUTTON_Y_OFFSET
	PAUSE_HIT_BOX_SCALE
	pauseButton
	buttonListener
	leftArrowButtonDown
	rightArrowButtonDown

	Constructor Detail
	ExplorationHud

	Method Detail
	draw
	reset
	scaleHitBox

	Field Detail
	BUTTON_SPACING
	TABLE_Y_OFFSET
	HEADER_Y_OFFSET
	BACK_BUTTON_X_OFFSET
	BACK_BUTTON_Y_OFFSET
	backpackBg
	backpackHeader
	survivalGuideButton
	craftingButton
	survivalGuideLabel
	craftingLabel
	backButton
	table

	Constructor Detail
	BackpackHud

	Method Detail
	draw
	reset

	Field Detail
	INVENTORY_LIST_HEIGHT
	INVENTORY_LIST_X_OFFSET
	INVENTORY_LIST_Y_OFFSET
	CRAFTING_TABLE_X_OFFSET
	CRAFTING_TABLE_Y_OFFSET
	CRAFT_BUTTON_X_OFFSET
	CRAFT_BUTTON_Y_OFFSET
	HEADER_X_OFFSET
	HEADER_Y_OFFSET
	BACK_BUTTON_X_OFFSET
	BACK_BUTTON_Y_OFFSET
	craftingManager
	craftingItems
	craftedItem
	inventory
	itemManager
	backpackBg
	craftingHeader
	inventoryList
	craftingTable
	confirmDialog
	craftButton
	backButton

	Constructor Detail
	CraftingHud

	Method Detail
	transferToInventory
	transferToCraftingTable
	promptCraft
	craftItem
	updateCraftedItem
	addToItemList
	reset
	emptyCraftingTable
	onBack

	Field Detail
	LIST_Y_OFFSET
	LIST_X_OFFSET
	SCROLL_PANE_WIDTH
	SCROLL_PANE_HEIGHT
	HEADER_X_OFFSET
	HEADER_Y_OFFSET
	BACK_BUTTON_X_OFFSET
	BACK_BUTTON_Y_OFFSET
	survivalGuideBg
	entryButtons
	entryButtonTable
	buttonListener
	entryLabel
	scrollPane
	scrollPaneTable
	displayingDescription
	entryNames
	entries
	backButton
	table

	Constructor Detail
	SurvivalGuideHud

	Method Detail
	createButtonTable
	draw
	showEntryList
	showEntryDescription
	reset
	offsetTablePosition
	backPressed

	Field Detail
	table
	OVERLAY_COLOR
	BUTTON_SPACING
	TABLE_OFFSET
	headerLabel
	resumeButton
	saveButton
	mainMenuButton
	saveDialog
	quitDialog
	buttonListener

	Constructor Detail
	PauseMenuHud

	Method Detail
	draw
	reset

	Field Detail
	NUM_COLUMNS
	NUM_ITEMS
	BUTTON_WIDTH
	BUTTON_HEIGHT
	BUTTON_PAD_RIGHT
	BUTTON_PAD_BOTTOM
	ITEM_BOX_COLOR
	TEXT_COLOR
	itemManager
	inventory
	assets
	buttonListener
	table
	itemCells
	craftedItemCell
	arrowImage
	buttonMap

	Constructor Detail
	CraftingTable

	Method Detail
	generateTable
	addItem
	setCraftedItem
	emptyTable
	getTable
	isItemButton
	getItemButtonClass
	isCraftedItemButton
	containsItem
	isFull
	buttonEquals

	Field Detail
	LIST_WIDTH
	BUTTON_TEXT_DISTANCE
	BUTTON_IMAGE_DISTANCE
	ITEM_BOX_WIDTH
	ITEM_BOX_HEIGHT
	ITEM_BOX_COLOR
	TEXT_COLOR
	TEXT_DOWN_COLOR
	inventory
	itemManager
	assets
	buttonListener
	scrollPane
	buttonTable
	scrollPaneTable
	listHeight
	buttonMap

	Constructor Detail
	InventoryList

	Method Detail
	generateList
	updateList
	addItem
	createItemButton
	updateItemButton
	addToList
	removeItemButton
	getButtonClass
	contains
	buttonEquals
	getTable

	Constructor Detail
	Assets

	Method Detail
	loadInitialAssets
	loadSplashScreenAssets
	queueAssetsForLoading
	queueGeneralAssets
	queueMainMenuAssets
	queueGameAssets
	updateLoading
	storeLoadedAssets
	storeGeneralAssets
	storeMainMenuAssets
	storeGameAssets
	loadExtraAssets
	loadGeneralAssets
	loadMainMenuAssets
	loadGameAssets
	disposeInitialAssets
	disposeMainMenuAssets
	dispose

	Field Detail
	instance
	combinations
	axe
	rifle
	gunpowder
	bullet
	teleporter

	Constructor Detail
	CraftingManager

	Method Detail
	getResult

	Field Detail
	itemPools
	itemSpritePools
	assets

	Constructor Detail
	ItemManager

	Method Detail
	obtainItem
	freeItem
	getSprite
	freeSprite

	Field Detail
	IDLE_TIME_EXPLORATION
	ZOMBIE_VIEW_DISTANCE
	FOLLOW_DISTANCE
	ZOMBIE_BACK_VIEW
	IDLE_TIME_COMBAT
	world

	Constructor Detail
	ZombieManager

	Method Detail
	update
	updateExploring
	updateAIExploring
	updateCombat
	updateAICombat
	chooseNextMove
	charge
	smash
	checkCollisions
	moveToStart
	checkLevelBoundaries
	checkPlayerProximity
	followPlayer
	zombieSeesPlayer
	canFollowPlayer
	isClose
	isVeryClose

	Field Detail
	JUMP_FLING_SPEED
	world
	paused

	Constructor Detail
	GestureManager

	Method Detail
	fling
	pause
	resume

	Field Detail
	world
	worldCamera
	inputListener
	touchPoint
	paused

	Constructor Detail
	InputManager

	Method Detail
	touchUp
	pause
	resume
	keyDown
	setInputListener
	getInputListener
	keyUp
	keyTyped
	touchDown
	touchDragged
	mouseMoved
	scrolled

	Field Detail
	assets
	BACKGROUND_MIN_WIDTH
	BACKGROUND_MIN_HEIGHT
	BUTTON_BACKGROUND_SPACING
	BUTTON_SPACING
	messageLabel
	yesButton
	noButton

	Constructor Detail
	ConfirmDialog

	Method Detail
	getConfirmButton
	setMessage

	Constructor Detail
	SpriteUtils

	Method Detail
	setPosition
	fixBleeding

	Field Detail
	MAX_WORLD_SEED
	firstTimeCreate
	profileId
	dateLastModified
	dateFormatter
	terrainRowOffset
	terrainColOffset
	lastXPos
	worldSeed
	scavengedLayerObjects
	loadout
	inventory

	Constructor Detail
	Profile
	Profile

	Method Detail
	getDateLastModified
	setProfileId
	getProfileId
	setWorldSeed
	getWorldSeed
	setTerrainRowOffset
	getTerrainRowOffset
	setTerrainColOffset
	getTerrainColOffset
	setLastXPos
	getLastXPos
	profileSaved
	toString
	write
	read
	writeScavengedLayerObjects
	readInventory
	readScavengedLayerObjects
	getScavengedLayerObjects
	addScavengedLayerObject
	addScavengedLayerObject
	getLoadout
	setLoadout
	getInventory
	setInventory
	getScavengedLayerObjects
	setScavengedLayerObjects
	isFirstTimeCreate
	setFirstTimeCreate

	Field Detail
	volume
	soundEnabled

	Constructor Detail
	SoundManager

	Method Detail
	play
	play
	setVolume
	setEnabled

	Field Detail
	music
	volume
	musicEnabled

	Constructor Detail
	MusicManager

	Method Detail
	play
	stop
	setVolume
	setEnabled

	Field Detail
	PREFS_NAME
	PREFS_MUSIC_VOLUME
	PREFS_SOUND_VOLUME
	PREFS_PROFILES_SAVED
	PREFS_LAST_PROFILE
	preferences

	Constructor Detail
	PreferencesManager

	Method Detail
	getPrefs
	getAmountProfiles
	setAmountProfiles
	getLastProfile
	setLastProfile
	newProfileCreated
	profileLoaded
	profileDeleted
	savePreferences

	Field Detail
	FILE_PATH
	numProfiles
	profiles
	currentProfile

	Constructor Detail
	ProfileManager

	Method Detail
	loadProfiles
	loadProfile
	getCurrentProfile
	getProfile
	getProfile
	createProfile
	saveProfile
	saveCurrentProfile
	deleteProfile
	shiftProfiles
	unloadProfiles
	deleteAllProfiles
	isEmpty
	getNumProfiles

	Field Detail
	profile
	profileManager
	world

	Constructor Detail
	Settings
	Settings
	Settings

	Method Detail
	save
	saveLastXPos
	getProfile
	setProfile
	getProfileManager
	setProfileManager
	getWorld
	setWorld

	Field Detail
	player
	poolMap
	assets

	Constructor Detail
	GameObjectManager

	Method Detail
	createPlayer
	getPlayer
	spawnItemObject
	spawnEarthquake
	getGameObject
	freeGameObject

	Field Detail
	row
	col

	Constructor Detail
	Cell
	Cell

	Method Detail
	moveLeft
	moveRight
	moveUp
	moveDown
	set
	getRow
	setRow
	getCol
	setCol

	Field Detail
	x1
	y1
	x2
	y2

	Constructor Detail
	Line
	Line

	Method Detail
	set
	intersects
	getX1
	setX1
	getY1
	setY1
	getX2
	setX2
	getY2
	setY2

	Field Detail
	SLOT_NAME
	name
	description
	itemAttachment

	Constructor Detail
	Item

	Method Detail
	getName
	setName
	getDescription
	setDescription
	getItemAttachment
	setItemAttachment

	Field Detail
	damage
	weaponSlotName
	weaponAttachment

	Constructor Detail
	Weapon

	Method Detail
	getDamage
	setDamage
	getSlotName
	setWeaponSlotName
	getWeaponAttachment
	setWeaponAttachment

	Field Detail
	WEAPON_SLOT_NAME
	crosshair
	crosshairPoint
	range
	chargeTime

	Constructor Detail
	RangedWeapon

	Method Detail
	hit
	getCrosshair
	getCrosshairPoint
	getRange
	setRange
	getChargeTime
	setChargeTime

	Field Detail
	reach
	collider
	WEAPON_SLOT_NAME

	Constructor Detail
	MeleeWeapon

	Method Detail
	getReach
	setReach
	hit
	hitTree
	getCollider
	setCollider

	Field Detail
	NAME
	DESCRIPTION
	DAMAGE
	REACH
	WEAPON_ATTACHMENT_NAME

	Constructor Detail
	Axe

	Method Detail
	hitTree

	Field Detail
	NAME
	DESCRIPTION
	DAMAGE
	RANGE
	CHARGE_TIME
	WEAPON_ATTACHMENT_NAME

	Constructor Detail
	Rifle

	Constructor Detail
	Craftable

	Field Detail
	NAME
	DESCRIPTION
	ITEM_ATTACHMENT_NAME

	Constructor Detail
	Teleporter

	Field Detail
	itemMap

	Constructor Detail
	Inventory

	Method Detail
	addItem
	getQuantity
	clear
	getItemMap
	setItemMap

	Field Detail
	meleeWeapon
	rangedWeapon

	Constructor Detail
	Loadout

	Method Detail
	getMeleeWeapon
	setMeleeWeapon
	getRangedWeapon
	setRangedWeapon
	clear

	Constructor Detail
	BoxPool

	Method Detail
	newObject

	Field Detail
	images
	rows
	cols
	width
	height

	Constructor Detail
	TiledImage

	Method Detail
	add
	row
	setPosition
	positionImages
	addToStage
	getWidth
	setWidth
	getHeight
	setHeight

	Field Detail
	assets
	world
	batcher
	worldCamera
	koSkeleton
	playTime
	events

	Constructor Detail
	KoAnimation

	Method Detail
	draw
	checkFinished

	Field Detail
	DEFAULT_LINE_COLOR
	LINE_LENGTH
	MAX_ANGLE
	world
	worldCamera
	shapeRenderer

	Constructor Detail
	CrosshairRenderer

	Method Detail
	render
	drawTrajectoryLine

	Method Detail
	onPlayAnimation
	pauseGui
	onAnimationComplete
	switchToCombat
	switchToExploration
	gameOver
	winGame

	Method Detail
	onBack
	onBackpackButton
	onPauseButton
	toggleInput
	toggleGestures
	saveGame
	switchToMainMenu
	switchToSurvivalGuide
	switchToCraftingMenu
	activateTeleporter
	gameOverHudFinished

	Field Detail
	itemClass
	quantity
	buttonStyle
	button
	itemImage
	itemBoxImage

	Constructor Detail
	CraftingTable.ItemCell

	Method Detail
	addQuantity
	setItemDrawable
	empty
	isEmpty
	setItemClass
	getItemClass
	getButton

	Field Detail
	result
	items

	Constructor Detail
	CraftingManager.Combination

	Method Detail
	addItem
	validItems
	contains
	getResult
	setResult

	Field Detail
	quantity
	item

	Constructor Detail
	CraftingManager.Item

	Method Detail
	add
	equals
	getItem
	setItem
	getQuantity
	setQuantity
	toString

	Field Detail
	itemConstructor

	Constructor Detail
	ItemManager.ItemPool

	Method Detail
	newObject

	Field Detail
	itemClass

	Constructor Detail
	ItemManager.SpritePool

	Method Detail
	newObject

